A Unified Rolling Shutter and Motion Blur Model for 3D Visual Registration

Maxime Meilland, T. Drummond, Andrew I. Comport
{"title":"A Unified Rolling Shutter and Motion Blur Model for 3D Visual Registration","authors":"Maxime Meilland, T. Drummond, Andrew I. Comport","doi":"10.1109/ICCV.2013.252","DOIUrl":null,"url":null,"abstract":"Motion blur and rolling shutter deformations both inhibit visual motion registration, whether it be due to a moving sensor or a moving target. Whilst both deformations exist simultaneously, no models have been proposed to handle them together. Furthermore, neither deformation has been considered previously in the context of monocular full-image 6 degrees of freedom registration or RGB-D structure and motion. As will be shown, rolling shutter deformation is observed when a camera moves faster than a single pixel in parallax between subsequent scan-lines. Blur is a function of the pixel exposure time and the motion vector. In this paper a complete dense 3D registration model will be derived to account for both motion blur and rolling shutter deformations simultaneously. Various approaches will be compared with respect to ground truth and live real-time performance will be demonstrated for complex scenarios where both blur and shutter deformations are dominant.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"60 1","pages":"2016-2023"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Motion blur and rolling shutter deformations both inhibit visual motion registration, whether it be due to a moving sensor or a moving target. Whilst both deformations exist simultaneously, no models have been proposed to handle them together. Furthermore, neither deformation has been considered previously in the context of monocular full-image 6 degrees of freedom registration or RGB-D structure and motion. As will be shown, rolling shutter deformation is observed when a camera moves faster than a single pixel in parallax between subsequent scan-lines. Blur is a function of the pixel exposure time and the motion vector. In this paper a complete dense 3D registration model will be derived to account for both motion blur and rolling shutter deformations simultaneously. Various approaches will be compared with respect to ground truth and live real-time performance will be demonstrated for complex scenarios where both blur and shutter deformations are dominant.
用于3D视觉配准的统一滚动快门和运动模糊模型
运动模糊和滚动快门变形都会抑制视觉运动注册,无论是由于移动的传感器还是移动的目标。虽然这两种变形同时存在,但没有提出将它们一起处理的模型。此外,在单眼全图像6自由度配准或RGB-D结构和运动的背景下,这两种变形都没有被考虑过。如图所示,当相机在后续扫描线之间的视差中移动速度超过单个像素时,就会观察到滚动快门变形。模糊是像素曝光时间和运动矢量的函数。本文将导出一个完整的密集三维配准模型,以同时考虑运动模糊和滚动快门变形。将对各种方法进行比较,并在模糊和快门变形占主导地位的复杂场景中演示实时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信