Unifying dependent clustering and disparate clustering for non-homogeneous data

M. S. Hossain, S. Tadepalli, L. Watson, I. Davidson, R. Helm, Naren Ramakrishnan
{"title":"Unifying dependent clustering and disparate clustering for non-homogeneous data","authors":"M. S. Hossain, S. Tadepalli, L. Watson, I. Davidson, R. Helm, Naren Ramakrishnan","doi":"10.1145/1835804.1835880","DOIUrl":null,"url":null,"abstract":"Modern data mining settings involve a combination of attribute-valued descriptors over entities as well as specified relationships between these entities. We present an approach to cluster such non-homogeneous datasets by using the relationships to impose either dependent clustering or disparate clustering constraints. Unlike prior work that views constraints as boolean criteria, we present a formulation that allows constraints to be satisfied or violated in a smooth manner. This enables us to achieve dependent clustering and disparate clustering using the same optimization framework by merely maximizing versus minimizing the objective function. We present results on both synthetic data as well as several real-world datasets.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835804.1835880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Modern data mining settings involve a combination of attribute-valued descriptors over entities as well as specified relationships between these entities. We present an approach to cluster such non-homogeneous datasets by using the relationships to impose either dependent clustering or disparate clustering constraints. Unlike prior work that views constraints as boolean criteria, we present a formulation that allows constraints to be satisfied or violated in a smooth manner. This enables us to achieve dependent clustering and disparate clustering using the same optimization framework by merely maximizing versus minimizing the objective function. We present results on both synthetic data as well as several real-world datasets.
统一非同构数据的依赖聚类和异构聚类
现代数据挖掘设置涉及实体上的属性值描述符以及这些实体之间指定关系的组合。我们提出了一种方法来聚类这种非同质的数据集,通过使用关系施加依赖的聚类或不同的聚类约束。与之前将约束视为布尔标准的工作不同,我们提出了一个公式,允许以平滑的方式满足或违反约束。这使我们能够通过最大化和最小化目标函数,使用相同的优化框架来实现依赖聚类和异构聚类。我们给出了合成数据和几个真实世界数据集的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信