Uncertainty analysis of water quality in water distribution system

Xiaolu Xiong, Yumin Wang
{"title":"Uncertainty analysis of water quality in water distribution system","authors":"Xiaolu Xiong, Yumin Wang","doi":"10.2166/aqua.2022.267","DOIUrl":null,"url":null,"abstract":"\n Water quality simulation is affected by uncertain parameters such as pipe roughness coefficients, chlorine bulk decay coefficients, and chlorine wall decay coefficients, which are usually considered to be fuzzy variables. The minimum and maximum nodal chlorine concentrations and water ages at each α-cut level were obtained by the genetic algorithm (GA) based on EPANET hydraulic and water quality simulation toolkit. The fuzziness of nodal chlorine concentrations and water ages were measured using the fuzziness measure (FM) proposed in this paper. The method was applied to four networks to analyze the fuzziness of nodal chlorine concentrations and water ages. The results indicated that the distribution of nodal chlorine concentrations does not follow typical trapezoid distribution, while the distribution of nodal water ages follows typical trapezoid distribution. In addition, the chlorine concentration and water ages of nodes farther from the source are affected by uncertain parameters to a greater extent. The greater demands of nodes lead to less effects of uncertain parameters on chlorine concentration, and greater effects of uncertain parameters on water ages. This study would help in analyzing the fuzziness of hydraulic and water quality simulation results in WDS under uncertain conditions.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2022.267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Water quality simulation is affected by uncertain parameters such as pipe roughness coefficients, chlorine bulk decay coefficients, and chlorine wall decay coefficients, which are usually considered to be fuzzy variables. The minimum and maximum nodal chlorine concentrations and water ages at each α-cut level were obtained by the genetic algorithm (GA) based on EPANET hydraulic and water quality simulation toolkit. The fuzziness of nodal chlorine concentrations and water ages were measured using the fuzziness measure (FM) proposed in this paper. The method was applied to four networks to analyze the fuzziness of nodal chlorine concentrations and water ages. The results indicated that the distribution of nodal chlorine concentrations does not follow typical trapezoid distribution, while the distribution of nodal water ages follows typical trapezoid distribution. In addition, the chlorine concentration and water ages of nodes farther from the source are affected by uncertain parameters to a greater extent. The greater demands of nodes lead to less effects of uncertain parameters on chlorine concentration, and greater effects of uncertain parameters on water ages. This study would help in analyzing the fuzziness of hydraulic and water quality simulation results in WDS under uncertain conditions.
配水系统水质的不确定性分析
水质模拟受管道粗糙度系数、氯体衰减系数、氯壁衰减系数等不确定参数的影响,这些不确定参数通常被认为是模糊变量。采用基于EPANET水力和水质模拟工具包的遗传算法(GA),得到了各α-切割水平下最小和最大节点氯浓度和水龄。采用本文提出的模糊度量法对节点氯浓度和水龄的模糊性进行了测量。将该方法应用于4个网络,分析节点氯浓度和水龄的模糊性。结果表明,节点氯浓度的分布不符合典型的梯形分布,而节点水龄的分布符合典型的梯形分布。此外,离源较远的节点氯浓度和水龄受不确定参数的影响更大。节点需求量越大,不确定参数对氯浓度的影响越小,不确定参数对水龄的影响越大。本研究有助于分析不确定条件下WDS水力和水质模拟结果的模糊性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信