Second glance framework (secG): enhanced ulcer detection with deep learning on a large wireless capsule endoscopy dataset

Sen Wang, Yuxiang Xing, Li Zhang, Hewei Gao, Haotong Zhang
{"title":"Second glance framework (secG): enhanced ulcer detection with deep learning on a large wireless capsule endoscopy dataset","authors":"Sen Wang, Yuxiang Xing, Li Zhang, Hewei Gao, Haotong Zhang","doi":"10.1117/12.2540456","DOIUrl":null,"url":null,"abstract":"Wireless Capsule Endoscopy (WCE) enables physicians to examine gastrointestinal (GI) tract without surgery. It has become a widely used diagnostic technique while the huge image data brings heavy burden to doctors. As a result, computer-aided diagnosis systems that can assist doctors as a second observer gain great research interest. In this paper, we aim to demonstrate the feasibility of deep learning for lesion recognition. We propose a Second Glance framework for ulcer detection and verified its effectiveness and robustness on a large ulcer WCE dataset (largest one to our knowledge for this problem) which consists of 1,504 independent WCE videos. The performance of our method is compared with off-the-shelf detection frameworks. Our framework achieves the best ROC-AUC of 0.9235 and outperforms the results of RetinaNet (0.8901), Faster-RCNN(0.9038) and SSD-300 (0.8355).","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"52 1","pages":"111980V - 111980V-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2540456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Wireless Capsule Endoscopy (WCE) enables physicians to examine gastrointestinal (GI) tract without surgery. It has become a widely used diagnostic technique while the huge image data brings heavy burden to doctors. As a result, computer-aided diagnosis systems that can assist doctors as a second observer gain great research interest. In this paper, we aim to demonstrate the feasibility of deep learning for lesion recognition. We propose a Second Glance framework for ulcer detection and verified its effectiveness and robustness on a large ulcer WCE dataset (largest one to our knowledge for this problem) which consists of 1,504 independent WCE videos. The performance of our method is compared with off-the-shelf detection frameworks. Our framework achieves the best ROC-AUC of 0.9235 and outperforms the results of RetinaNet (0.8901), Faster-RCNN(0.9038) and SSD-300 (0.8355).
Second glance框架(secG):在大型无线胶囊内窥镜数据集上使用深度学习增强溃疡检测
无线胶囊内窥镜(WCE)使医生无需手术即可检查胃肠道。它已成为一种广泛应用的诊断技术,但庞大的图像数据给医生带来了沉重的负担。因此,能够辅助医生作为第二观察者的计算机辅助诊断系统获得了极大的研究兴趣。在本文中,我们旨在证明深度学习用于病变识别的可行性。我们提出了一个用于溃疡检测的Second Glance框架,并在一个大型溃疡WCE数据集(据我们所知该问题最大的数据集)上验证了其有效性和鲁棒性,该数据集由1,504个独立的WCE视频组成。将该方法的性能与现有检测框架进行了比较。该框架的最佳ROC-AUC为0.9235,优于RetinaNet(0.8901)、Faster-RCNN(0.9038)和SSD-300(0.8355)的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信