Multi-source Heterogeneous Data Fusion Method Considering Information Entropy in Large Data Environment

Shujuan Zhang, Zijing Wang
{"title":"Multi-source Heterogeneous Data Fusion Method Considering Information Entropy in Large Data Environment","authors":"Shujuan Zhang, Zijing Wang","doi":"10.14257/IJDTA.2017.10.1.04","DOIUrl":null,"url":null,"abstract":"Massive trivial redundancy alarm information with high error alarm rate, generated by network security defense equipment, causes great difficulty in alarm analysis and understanding. In allusion to the research on this problem, an improved multi-source heterogeneous data fusion scheme is proposed in this paper to comprehensively analyze such attributes as alarm type, source IP, destination IP, destination port and time interval and summarize four rules, thus to dynamically update the time interval threshold value during the fusion process and improve the fusion accuracy. The experiment result shows that such method can efficiently reduce the quantity of the heterogeneous alarm information, and obtain accurate super-alarm data, as well as realize the ability for timely processing the alarm information.","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"70 1","pages":"37-46"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJDTA.2017.10.1.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Massive trivial redundancy alarm information with high error alarm rate, generated by network security defense equipment, causes great difficulty in alarm analysis and understanding. In allusion to the research on this problem, an improved multi-source heterogeneous data fusion scheme is proposed in this paper to comprehensively analyze such attributes as alarm type, source IP, destination IP, destination port and time interval and summarize four rules, thus to dynamically update the time interval threshold value during the fusion process and improve the fusion accuracy. The experiment result shows that such method can efficiently reduce the quantity of the heterogeneous alarm information, and obtain accurate super-alarm data, as well as realize the ability for timely processing the alarm information.
大数据环境下考虑信息熵的多源异构数据融合方法
网络安全防御设备产生的大量琐碎冗余报警信息,错误率高,给告警分析和理解带来很大困难。针对这一问题的研究,本文提出了一种改进的多源异构数据融合方案,综合分析告警类型、源IP、目的IP、目的端口、时间间隔等属性,总结出4条规则,从而在融合过程中动态更新时间间隔阈值,提高融合精度。实验结果表明,该方法可以有效地减少异构报警信息的数量,获得准确的超级报警数据,并实现对报警信息的及时处理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信