Formalizing Probability Concepts in a Type Theory

IF 0.3 Q4 MATHEMATICS
F. Kachapova
{"title":"Formalizing Probability Concepts in a Type Theory","authors":"F. Kachapova","doi":"10.3844/OFSP.12176","DOIUrl":null,"url":null,"abstract":"In this paper we formalize some fundamental concepts of probability theory such as the axiomatic definition of probability space, random variables and their characteristics, in the Calculus of Inductive Constructions, which is a variant of type theory and the foundation for the proof assistant COQ. In a type theory every term and proposition should have a type, so in our formalizations we assign an appropriate type to each object in order to create a framework where further development of formalized probability theory will be possible. Our formalizations are based on mathematical results developed in the COQ standard library; we use mainly the parts with logic and formalized real analysis. In the future we aim to create COQ coding for our formalizations of probability concepts and theorems. In this paper the definitions and some proofs are presented as flag-style derivations while other proofs are more informal.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"8 1","pages":"209-218"},"PeriodicalIF":0.3000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/OFSP.12176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we formalize some fundamental concepts of probability theory such as the axiomatic definition of probability space, random variables and their characteristics, in the Calculus of Inductive Constructions, which is a variant of type theory and the foundation for the proof assistant COQ. In a type theory every term and proposition should have a type, so in our formalizations we assign an appropriate type to each object in order to create a framework where further development of formalized probability theory will be possible. Our formalizations are based on mathematical results developed in the COQ standard library; we use mainly the parts with logic and formalized real analysis. In the future we aim to create COQ coding for our formalizations of probability concepts and theorems. In this paper the definitions and some proofs are presented as flag-style derivations while other proofs are more informal.
在类型论中形式化概率概念
本文形式化了概率论的一些基本概念,如概率空间的公理化定义、随机变量及其特征,这是类型论的一个变体,也是证明辅助COQ的基础。在类型论中,每个项和命题都应该有一个类型,所以在我们的形式化中,我们为每个对象分配一个适当的类型,以便创建一个框架,使形式化概率论的进一步发展成为可能。我们的形式化是基于COQ标准库中开发的数学结果;我们主要使用逻辑和形式化实分析的部分。在未来,我们的目标是为概率概念和定理的形式化创建COQ编码。在本文中,定义和一些证明是作为标志式的推导,而其他证明则是非正式的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信