G. Conte, Allen Q. Ye, K. Almryde, O. Ajilore, A. Leow, A. Forbes
{"title":"Intrinsic Geometry Visualization for the Interactive Analysis of Brain Connectivity Patterns","authors":"G. Conte, Allen Q. Ye, K. Almryde, O. Ajilore, A. Leow, A. Forbes","doi":"10.2352/ISSN.2470-1173.2016.1.VDA-481","DOIUrl":null,"url":null,"abstract":"Understanding how brain regions are interconnected is an important topic within the domain of neuroimaging. Advances in non-invasive technologies enable larger and more detailed images to be collected more quickly than ever before. These data contribute to create what is usually referred to as a connectome, that is, a comprehensive map of neural connections. The availability of connectome data allows for more interesting questions to be asked and more complex analyses to be conducted. In this paper we present a novel web-based 3D visual analytics tool that allows user to interactively explore the intrinsic geometry of the connectome. That is, brain data that has been transformed through a dimensionality reduction step, such as multidimensional scaling (MDS), Isomap, or t-distributed stochastic neighbor embedding (t-SNE) techniques. We evaluate our tool through a series of real-world case studies, demonstrating its effectiveness in aiding domain experts for a range of neuroimaging","PeriodicalId":89305,"journal":{"name":"Visualization and data analysis","volume":"49 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ISSN.2470-1173.2016.1.VDA-481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Understanding how brain regions are interconnected is an important topic within the domain of neuroimaging. Advances in non-invasive technologies enable larger and more detailed images to be collected more quickly than ever before. These data contribute to create what is usually referred to as a connectome, that is, a comprehensive map of neural connections. The availability of connectome data allows for more interesting questions to be asked and more complex analyses to be conducted. In this paper we present a novel web-based 3D visual analytics tool that allows user to interactively explore the intrinsic geometry of the connectome. That is, brain data that has been transformed through a dimensionality reduction step, such as multidimensional scaling (MDS), Isomap, or t-distributed stochastic neighbor embedding (t-SNE) techniques. We evaluate our tool through a series of real-world case studies, demonstrating its effectiveness in aiding domain experts for a range of neuroimaging