Intrinsic Geometry Visualization for the Interactive Analysis of Brain Connectivity Patterns

G. Conte, Allen Q. Ye, K. Almryde, O. Ajilore, A. Leow, A. Forbes
{"title":"Intrinsic Geometry Visualization for the Interactive Analysis of Brain Connectivity Patterns","authors":"G. Conte, Allen Q. Ye, K. Almryde, O. Ajilore, A. Leow, A. Forbes","doi":"10.2352/ISSN.2470-1173.2016.1.VDA-481","DOIUrl":null,"url":null,"abstract":"Understanding how brain regions are interconnected is an important topic within the domain of neuroimaging. Advances in non-invasive technologies enable larger and more detailed images to be collected more quickly than ever before. These data contribute to create what is usually referred to as a connectome, that is, a comprehensive map of neural connections. The availability of connectome data allows for more interesting questions to be asked and more complex analyses to be conducted. In this paper we present a novel web-based 3D visual analytics tool that allows user to interactively explore the intrinsic geometry of the connectome. That is, brain data that has been transformed through a dimensionality reduction step, such as multidimensional scaling (MDS), Isomap, or t-distributed stochastic neighbor embedding (t-SNE) techniques. We evaluate our tool through a series of real-world case studies, demonstrating its effectiveness in aiding domain experts for a range of neuroimaging","PeriodicalId":89305,"journal":{"name":"Visualization and data analysis","volume":"49 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ISSN.2470-1173.2016.1.VDA-481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Understanding how brain regions are interconnected is an important topic within the domain of neuroimaging. Advances in non-invasive technologies enable larger and more detailed images to be collected more quickly than ever before. These data contribute to create what is usually referred to as a connectome, that is, a comprehensive map of neural connections. The availability of connectome data allows for more interesting questions to be asked and more complex analyses to be conducted. In this paper we present a novel web-based 3D visual analytics tool that allows user to interactively explore the intrinsic geometry of the connectome. That is, brain data that has been transformed through a dimensionality reduction step, such as multidimensional scaling (MDS), Isomap, or t-distributed stochastic neighbor embedding (t-SNE) techniques. We evaluate our tool through a series of real-world case studies, demonstrating its effectiveness in aiding domain experts for a range of neuroimaging
脑连接模式交互分析的内在几何可视化
了解大脑区域如何相互联系是神经影像学领域的一个重要课题。非侵入性技术的进步使得能够比以往更快地收集更大、更详细的图像。这些数据有助于创建通常被称为连接组的东西,即神经连接的综合地图。连接组数据的可用性允许提出更有趣的问题,并进行更复杂的分析。在本文中,我们提出了一种新颖的基于web的3D可视化分析工具,允许用户交互式地探索连接体的内在几何形状。也就是说,通过多维尺度(MDS)、Isomap或t分布随机邻居嵌入(t-SNE)技术等降维步骤进行转换的大脑数据。我们通过一系列现实世界的案例研究来评估我们的工具,证明它在帮助领域专家进行一系列神经成像方面的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信