{"title":"SOME PROPERTIES OF THE SET OF ALL STRONG UNIFORM CLUSTER POINTS","authors":"S. Pehlivan","doi":"10.22190/fumi211017041p","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to establish some relationship between the set of strong uniform statistical cluster points and the set of strong statistical cluster points of a given sequence in the probabilistic normed space. To this aim, let the uniform density be on the positive integers N for a sequence in the probabilistic normed space, that is, cases as equal of the lower and upper uniform density of a subset of N. We introduce the concept of strong uniform statistical cluster points and give a new type convergence in the probabilistic normed space. Note that the set of strong uniform statistical cluster points is a non-empty compact set. We also investigate some properties of the set all strong uniform cluster points of a sequence in the probabilistic normed space.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"27 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi211017041p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to establish some relationship between the set of strong uniform statistical cluster points and the set of strong statistical cluster points of a given sequence in the probabilistic normed space. To this aim, let the uniform density be on the positive integers N for a sequence in the probabilistic normed space, that is, cases as equal of the lower and upper uniform density of a subset of N. We introduce the concept of strong uniform statistical cluster points and give a new type convergence in the probabilistic normed space. Note that the set of strong uniform statistical cluster points is a non-empty compact set. We also investigate some properties of the set all strong uniform cluster points of a sequence in the probabilistic normed space.