A Variational Adaptive Population Importance Sampler

Yousef El-Laham, P. Djurić, M. Bugallo
{"title":"A Variational Adaptive Population Importance Sampler","authors":"Yousef El-Laham, P. Djurić, M. Bugallo","doi":"10.1109/ICASSP.2019.8683152","DOIUrl":null,"url":null,"abstract":"Adaptive importance sampling (AIS) methods are a family of algorithms which can be used to approximate Bayesian posterior distributions. Many AIS algorithms exist in the literature, where the differences arise in the manner by which the proposal distribution is adapted at each iteration. The adaptive population importance sampler (APIS), for example, deterministically samples from a mixture distribution and uses the local information given by the samples and weights to adapt the location parameter of each proposal. The update rules by nature are heuristic, but effective, especially in the case that the target posterior is multimodal. In this work, we introduce a novel AIS scheme which incorporates modern techniques in stochastic optimization to improve the methodology for higher-dimensional posterior inference. More specifically, we derive update rules for the parameters of each proposal by means of deterministic mixture sampling and show that the method outperforms other state-of-the-art approaches in high-dimensional scenarios.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"69 1","pages":"5052-5056"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Adaptive importance sampling (AIS) methods are a family of algorithms which can be used to approximate Bayesian posterior distributions. Many AIS algorithms exist in the literature, where the differences arise in the manner by which the proposal distribution is adapted at each iteration. The adaptive population importance sampler (APIS), for example, deterministically samples from a mixture distribution and uses the local information given by the samples and weights to adapt the location parameter of each proposal. The update rules by nature are heuristic, but effective, especially in the case that the target posterior is multimodal. In this work, we introduce a novel AIS scheme which incorporates modern techniques in stochastic optimization to improve the methodology for higher-dimensional posterior inference. More specifically, we derive update rules for the parameters of each proposal by means of deterministic mixture sampling and show that the method outperforms other state-of-the-art approaches in high-dimensional scenarios.
变分适应种群重要性采样器
自适应重要性抽样(AIS)方法是一类用于近似贝叶斯后验分布的算法。文献中存在许多AIS算法,其中差异在于每次迭代时适应提案分布的方式。例如,自适应种群重要性采样器(api)从混合分布中确定样本,并使用样本和权重给出的局部信息来适应每个提案的位置参数。更新规则本质上是启发式的,但它是有效的,特别是在目标后验是多模态的情况下。在这项工作中,我们引入了一种新的AIS方案,该方案结合了随机优化中的现代技术,以改进高维后验推理的方法。更具体地说,我们通过确定性混合抽样推导出每个提案参数的更新规则,并表明该方法在高维场景下优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信