{"title":"Avoiding long Berge cycles II, exact bounds for all $n$","authors":"Z. Furedi, A. Kostochka, Ruth Luo","doi":"10.4310/joc.2021.v12.n2.a4","DOIUrl":null,"url":null,"abstract":"Let $EG_r(n,k)$ denote the maximum number of edges in an $n$-vertex $r$-uniform hypergraph with no Berge cycles of length $k$ or longer. In the first part of this work, we have found exact values of $EG_r(n,k)$ and described the structure of extremal hypergraphs for the case when $k-2$ divides $n-1$ and $k\\geq r+3$. In this paper we determine $EG_r(n,k)$ and describe the extremal hypergraphs for all $n$ when $k\\geq r+4$.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"58 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2021.v12.n2.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13
Abstract
Let $EG_r(n,k)$ denote the maximum number of edges in an $n$-vertex $r$-uniform hypergraph with no Berge cycles of length $k$ or longer. In the first part of this work, we have found exact values of $EG_r(n,k)$ and described the structure of extremal hypergraphs for the case when $k-2$ divides $n-1$ and $k\geq r+3$. In this paper we determine $EG_r(n,k)$ and describe the extremal hypergraphs for all $n$ when $k\geq r+4$.