AN OVERVIEW OF EDUCATIONAL DATA MINING

T. Nguyen, Vi Thi Thuy Ha
{"title":"AN OVERVIEW OF EDUCATIONAL DATA MINING","authors":"T. Nguyen, Vi Thi Thuy Ha","doi":"10.35382/18594816.1.1.2019.88","DOIUrl":null,"url":null,"abstract":"Higher education data is growing, but the exploitation and extraction of meaningful knowledge for management have not been paid much attention. The existing mining tools are not effective. This study aims to introduce three techniques for educational data mining: (1) Classification techniques, (2) Predictive models, (3) Clustering techniques. Simultaneously, the study also proposes some solutions to analyze and visualize data, predict students’ learning capacity and assemble  learners. Thereby, education managers could choose appropriate data mining solutions for effective management and training.","PeriodicalId":21692,"journal":{"name":"Scientific Journal of Tra Vinh University","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Tra Vinh University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35382/18594816.1.1.2019.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Higher education data is growing, but the exploitation and extraction of meaningful knowledge for management have not been paid much attention. The existing mining tools are not effective. This study aims to introduce three techniques for educational data mining: (1) Classification techniques, (2) Predictive models, (3) Clustering techniques. Simultaneously, the study also proposes some solutions to analyze and visualize data, predict students’ learning capacity and assemble  learners. Thereby, education managers could choose appropriate data mining solutions for effective management and training.
教育数据挖掘概述
高等教育数据不断增长,但对有意义的管理知识的开发和提取却没有受到重视。现有的挖掘工具并不有效。本研究旨在介绍三种教育数据挖掘技术:(1)分类技术,(2)预测模型,(3)聚类技术。同时,本研究还提出了数据分析和可视化、学生学习能力预测和学习者集合的解决方案。因此,教育管理者可以选择合适的数据挖掘解决方案进行有效的管理和培训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信