Influence of Ultrasound on the Properties of Polysaccharide Complexes and Materials Based on Them

E. Mokhova, M. Gordienko, Natalia Menshutina, S. Kalenov, I. Avetissov, Artyom V. Eremeev
{"title":"Influence of Ultrasound on the Properties of Polysaccharide Complexes and Materials Based on Them","authors":"E. Mokhova, M. Gordienko, Natalia Menshutina, S. Kalenov, I. Avetissov, Artyom V. Eremeev","doi":"10.3390/polysaccharides4030014","DOIUrl":null,"url":null,"abstract":"Freeze-drying is often used as a final stage to produce three-dimensional porous matrices for medicine. Because a pure solvent crystallizes first during freezing, it acts as a pore-forming agent. The size of the solvent crystals primarily depends on the cooling rate and the composition of the material to be frozen. Ultrasonic treatment also affects the size of crystals and can be used to control the structure of a porous matrix. This article describes the effect of ultrasound (40 kHz, 50 W) applied at the preliminary freezing stage of polysaccharide solutions (alginate, chitosan, alginate–chitosan and alginate–gelatin) on the finished matrix properties. The most attention was paid to the effect of ultrasound on the size and shape of crystals formed during freezing, which leads to a change in the porous structure of the matrices after solvent sublimation. As a result of changes in the microstructure, a number of differences in the vibrational spectra of the molecules and the values of pore volume, sorption capacity, permeability and degradation of matrices were identified. Such changes in the structure of materials, as well as the emerging directionality of pores, together can affect the process of cell cultivation in these polysaccharide matrices, which can be useful in solving problems of tissue engineering.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/polysaccharides4030014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Freeze-drying is often used as a final stage to produce three-dimensional porous matrices for medicine. Because a pure solvent crystallizes first during freezing, it acts as a pore-forming agent. The size of the solvent crystals primarily depends on the cooling rate and the composition of the material to be frozen. Ultrasonic treatment also affects the size of crystals and can be used to control the structure of a porous matrix. This article describes the effect of ultrasound (40 kHz, 50 W) applied at the preliminary freezing stage of polysaccharide solutions (alginate, chitosan, alginate–chitosan and alginate–gelatin) on the finished matrix properties. The most attention was paid to the effect of ultrasound on the size and shape of crystals formed during freezing, which leads to a change in the porous structure of the matrices after solvent sublimation. As a result of changes in the microstructure, a number of differences in the vibrational spectra of the molecules and the values of pore volume, sorption capacity, permeability and degradation of matrices were identified. Such changes in the structure of materials, as well as the emerging directionality of pores, together can affect the process of cell cultivation in these polysaccharide matrices, which can be useful in solving problems of tissue engineering.
超声对多糖配合物及其材料性质的影响
冷冻干燥常被用作生产三维多孔医学基质的最后阶段。因为纯溶剂在冷冻过程中首先结晶,所以它起到了成孔剂的作用。溶剂晶体的大小主要取决于冷却速度和被冻结材料的组成。超声波处理也会影响晶体的大小,并可用于控制多孔基质的结构。本文介绍了在多糖溶液(海藻酸盐、壳聚糖、海藻酸盐-壳聚糖和海藻酸盐-明胶)的初始冷冻阶段,超声波(40 kHz, 50 W)对成品基质性能的影响。超声波对冷冻过程中形成的晶体大小和形状的影响是最受关注的,这导致溶剂升华后基质的多孔结构发生变化。由于微观结构的变化,分子的振动谱以及孔隙体积、吸附容量、渗透率和基质降解的数值存在许多差异。这种材料结构的变化,以及孔隙的方向性的出现,共同影响了这些多糖基质中细胞培养的过程,这对解决组织工程问题是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信