{"title":"Further Investigation of Parametric Loss Given Default Modeling","authors":"Phillip Li, M. Qi, Xiaofei Zhang, Xinlei Zhao","doi":"10.21314/JCR.2016.215","DOIUrl":null,"url":null,"abstract":"We conduct a comprehensive study of some parametric models that are designed to fit the unusual bounded and bimodal distribution of loss given default (LGD). We first examine a smearing estimator, a Monte Carlo estimator and a global adjustment approach to refine transformation regression models that address issues with LGD boundary values. Although these refinements only marginally improve model performance, the smearing and Monte Carlo estimators help to reduce the sensitivity of transformation regressions to the adjustment factor. We then conduct a horse race among the refined transformation methods, five parametric models that are specifically suitable for LGD modeling (two-step, inflated beta, Tobit, censored gamma and two-tiered gamma regressions), fractional response regression and standard linear regression. We find that the sophisticated parametric models do not clearly outperform the simpler ones in either predictive accuracy or rank-ordering ability, in-sample, out-of-sample or out of time. Therefore, it is important for modelers and researchers to choose the model that is appropriate for their particular data set, considering differences in model complexity, computational burden, ease of implementation and model performance.","PeriodicalId":44244,"journal":{"name":"Journal of Credit Risk","volume":"18 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2016-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Credit Risk","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JCR.2016.215","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 19
Abstract
We conduct a comprehensive study of some parametric models that are designed to fit the unusual bounded and bimodal distribution of loss given default (LGD). We first examine a smearing estimator, a Monte Carlo estimator and a global adjustment approach to refine transformation regression models that address issues with LGD boundary values. Although these refinements only marginally improve model performance, the smearing and Monte Carlo estimators help to reduce the sensitivity of transformation regressions to the adjustment factor. We then conduct a horse race among the refined transformation methods, five parametric models that are specifically suitable for LGD modeling (two-step, inflated beta, Tobit, censored gamma and two-tiered gamma regressions), fractional response regression and standard linear regression. We find that the sophisticated parametric models do not clearly outperform the simpler ones in either predictive accuracy or rank-ordering ability, in-sample, out-of-sample or out of time. Therefore, it is important for modelers and researchers to choose the model that is appropriate for their particular data set, considering differences in model complexity, computational burden, ease of implementation and model performance.
期刊介绍:
With the re-writing of the Basel accords in international banking and their ensuing application, interest in credit risk has never been greater. The Journal of Credit Risk focuses on the measurement and management of credit risk, the valuation and hedging of credit products, and aims to promote a greater understanding in the area of credit risk theory and practice. The Journal of Credit Risk considers submissions in the form of research papers and technical papers, on topics including, but not limited to: Modelling and management of portfolio credit risk Recent advances in parameterizing credit risk models: default probability estimation, copulas and credit risk correlation, recoveries and loss given default, collateral valuation, loss distributions and extreme events Pricing and hedging of credit derivatives Structured credit products and securitizations e.g. collateralized debt obligations, synthetic securitizations, credit baskets, etc. Measuring managing and hedging counterparty credit risk Credit risk transfer techniques Liquidity risk and extreme credit events Regulatory issues, such as Basel II, internal ratings systems, credit-scoring techniques and credit risk capital adequacy.