Recommending tags with a model of human categorization

Paul Seitlinger, Dominik Kowald, C. Trattner, Tobias Ley
{"title":"Recommending tags with a model of human categorization","authors":"Paul Seitlinger, Dominik Kowald, C. Trattner, Tobias Ley","doi":"10.1145/2505515.2505625","DOIUrl":null,"url":null,"abstract":"When interacting with social tagging systems, humans exercise complex processes of categorization that have been the topic of much research in cognitive science. In this paper we present a recommender approach for social tags derived from ALCOVE, a model of human category learning. The basic architecture is a simple three-layers connectionist model. The input layer encodes patterns of semantic features of a user-specific resource, such as latent topics elicited through Latent Dirichlet Allocation (LDA) or available external categories. The hidden layer categorizes the resource by matching the encoded pattern against already learned exemplar patterns. The latter are composed of unique feature patterns and associated tag distributions. Finally, the output layer samples tags from the associated tag distributions to verbalize the preceding categorization process. We have evaluated this approach on a real-world folksonomy gathered from Wikipedia bookmarks in Delicious. In the experiment our approach outperformed LDA, a well-established algorithm. We attribute this to the fact that our approach processes semantic information (either latent topics or external categories) across the three different layers. With this paper, we demonstrate that a theoretically guided design of algorithms not only holds potential for improving existing recommendation mechanisms, but it also allows us to derive more generalizable insights about how human information interaction on the Web is determined by both semantic and verbal processes.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

When interacting with social tagging systems, humans exercise complex processes of categorization that have been the topic of much research in cognitive science. In this paper we present a recommender approach for social tags derived from ALCOVE, a model of human category learning. The basic architecture is a simple three-layers connectionist model. The input layer encodes patterns of semantic features of a user-specific resource, such as latent topics elicited through Latent Dirichlet Allocation (LDA) or available external categories. The hidden layer categorizes the resource by matching the encoded pattern against already learned exemplar patterns. The latter are composed of unique feature patterns and associated tag distributions. Finally, the output layer samples tags from the associated tag distributions to verbalize the preceding categorization process. We have evaluated this approach on a real-world folksonomy gathered from Wikipedia bookmarks in Delicious. In the experiment our approach outperformed LDA, a well-established algorithm. We attribute this to the fact that our approach processes semantic information (either latent topics or external categories) across the three different layers. With this paper, we demonstrate that a theoretically guided design of algorithms not only holds potential for improving existing recommendation mechanisms, but it also allows us to derive more generalizable insights about how human information interaction on the Web is determined by both semantic and verbal processes.
推荐带有人类分类模型的标签
当与社会标签系统交互时,人类会进行复杂的分类过程,这是认知科学中许多研究的主题。在本文中,我们提出了一种来自ALCOVE的社会标签推荐方法,ALCOVE是一种人类类别学习模型。基本架构是一个简单的三层连接模型。输入层对用户特定资源的语义特征模式进行编码,例如通过潜在狄利克雷分配(latent Dirichlet Allocation, LDA)或可用的外部类别引发的潜在主题。隐藏层通过将编码模式与已经学习的范例模式进行匹配来对资源进行分类。后者由独特的特征模式和相关的标签分布组成。最后,输出层从相关的标记分布中采样标记,以描述前面的分类过程。我们在Delicious中对从维基百科书签中收集的真实世界的大众分类法进行了评估。在实验中,我们的方法优于LDA(一种成熟的算法)。我们将此归因于我们的方法跨三个不同层处理语义信息(潜在主题或外部类别)的事实。通过本文,我们证明了理论指导的算法设计不仅具有改进现有推荐机制的潜力,而且还允许我们获得关于Web上的人类信息交互如何由语义和口头过程决定的更一般化的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信