Maximum principle for discrete-time stochastic optimal control problem and stochastic game

IF 0.9 4区 数学 Q1 MATHEMATICS
Zhen Wu, Feng Zhang
{"title":"Maximum principle for discrete-time stochastic optimal control problem and stochastic game","authors":"Zhen Wu, Feng Zhang","doi":"10.3934/mcrf.2021031","DOIUrl":null,"url":null,"abstract":"This paper is first concerned with one kind of discrete-time stochastic optimal control problem with convex control domains, for which necessary condition in the form of Pontryagin's maximum principle and sufficient condition of optimality are derived. The results are then extended to two kinds of discrete-time stochastic games. Two illustrative examples are studied, for which the explicit optimal strategies are given. This paper establishes a rigorous version of discrete-time stochastic maximum principle in a clear and concise way and paves a road for further related topics.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"25 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2021031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

This paper is first concerned with one kind of discrete-time stochastic optimal control problem with convex control domains, for which necessary condition in the form of Pontryagin's maximum principle and sufficient condition of optimality are derived. The results are then extended to two kinds of discrete-time stochastic games. Two illustrative examples are studied, for which the explicit optimal strategies are given. This paper establishes a rigorous version of discrete-time stochastic maximum principle in a clear and concise way and paves a road for further related topics.
离散时间随机最优控制问题和随机对策的极大值原理
本文首先研究了一类具有凸控制域的离散时间随机最优控制问题,给出了该问题的庞特里亚金极大值原理形式的必要条件和最优性的充分条件。然后将结果推广到两类离散时间随机对策。研究了两个实例,给出了明确的最优策略。本文以清晰简洁的方式建立了离散时间随机极大值原理的严格版本,为进一步开展相关课题奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Control and Related Fields
Mathematical Control and Related Fields MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
8.30%
发文量
67
期刊介绍: MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信