Fast Computation of Microwave Radiances for Data Assimilation Using the “Successive Order of Scattering” Method.

T. Greenwald, R. Bennartz, C. O’Dell, A. Heidinger
{"title":"Fast Computation of Microwave Radiances for Data Assimilation Using the “Successive Order of Scattering” Method.","authors":"T. Greenwald, R. Bennartz, C. O’Dell, A. Heidinger","doi":"10.1175/JAM2239.1","DOIUrl":null,"url":null,"abstract":"Abstract Fast and accurate radiative transfer (RT) models are crucial in making use of microwave satellite data feasible under all weather conditions in numerical weather prediction (NWP) data assimilation. A multistream “successive order of scattering” (SOS) RT model has been developed to determine its suitability in NWP for computing microwave radiances in precipitating clouds. Results show that the two-stream SOS model is up to 10 times as fast as and is as accurate as the commonly used delta-Eddington model for weaker scattering [column scattering optical depth (CSOD) 30 GHz) in cases of moderately strong to strong scattering (CSOD > 5). If two- and four-stream SOS models are used in combination, however, it was found that 85.5-GHz brightness temperatures computed for 1° × 1° global forecast fields were more accurate ( 0.1) and were executed 4 times as fast as the delta-Eddington model. The SOS method has...","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"30 1","pages":"960-966"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2239.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Abstract Fast and accurate radiative transfer (RT) models are crucial in making use of microwave satellite data feasible under all weather conditions in numerical weather prediction (NWP) data assimilation. A multistream “successive order of scattering” (SOS) RT model has been developed to determine its suitability in NWP for computing microwave radiances in precipitating clouds. Results show that the two-stream SOS model is up to 10 times as fast as and is as accurate as the commonly used delta-Eddington model for weaker scattering [column scattering optical depth (CSOD) 30 GHz) in cases of moderately strong to strong scattering (CSOD > 5). If two- and four-stream SOS models are used in combination, however, it was found that 85.5-GHz brightness temperatures computed for 1° × 1° global forecast fields were more accurate ( 0.1) and were executed 4 times as fast as the delta-Eddington model. The SOS method has...
用“逐次散射”方法快速计算微波辐射度以同化数据。
摘要在数值天气预报资料同化中,快速、准确的辐射传输(RT)模型是保证微波卫星资料在所有天气条件下都可行的关键。建立了一种多流“逐次散射”(SOS) RT模型,以确定其在NWP中计算降水云中微波辐射的适用性。结果表明,在中强至强散射(CSOD > 5)条件下,双流SOS模型在较弱散射条件下(柱散射光学深度(CSOD) 30 GHz)的速度和精度是常用的delta-Eddington模型的10倍。结果表明,在1°× 1°全球预报场中计算的85.5 ghz亮度温度精度为0.1,执行速度是delta-Eddington模型的4倍。SOS方法有…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信