Assessing sparse information extraction using semantic contexts

Peipei Li, Haixun Wang, Hongsong Li, Xindong Wu
{"title":"Assessing sparse information extraction using semantic contexts","authors":"Peipei Li, Haixun Wang, Hongsong Li, Xindong Wu","doi":"10.1145/2505515.2505598","DOIUrl":null,"url":null,"abstract":"One important assumption of information extraction is that extractions occurring more frequently are more likely to be correct. Sparse information extraction is challenging because no matter how big a corpus is, there are extractions supported by only a small amount of evidence in the corpus. A pioneering work known as REALM learns HMMs to model the context of a semantic relationship for assessing the extractions. This is quite costly and the semantics revealed for the context are not explicit. In this work, we introduce a lightweight, explicit semantic approach for sparse information extraction. We use a large semantic network consisting of millions of concepts, entities, and attributes to explicitly model the context of semantic relationships. Experiments show that our approach improves the F-score of extraction by at least 11.2% over state-of-the-art, HMM based approaches while maintaining more efficiency.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

One important assumption of information extraction is that extractions occurring more frequently are more likely to be correct. Sparse information extraction is challenging because no matter how big a corpus is, there are extractions supported by only a small amount of evidence in the corpus. A pioneering work known as REALM learns HMMs to model the context of a semantic relationship for assessing the extractions. This is quite costly and the semantics revealed for the context are not explicit. In this work, we introduce a lightweight, explicit semantic approach for sparse information extraction. We use a large semantic network consisting of millions of concepts, entities, and attributes to explicitly model the context of semantic relationships. Experiments show that our approach improves the F-score of extraction by at least 11.2% over state-of-the-art, HMM based approaches while maintaining more efficiency.
使用语义上下文评估稀疏信息提取
信息提取的一个重要假设是,越频繁的提取越有可能是正确的。稀疏信息提取具有挑战性,因为无论语料库有多大,语料库中只有少量证据支持的提取。一项名为REALM的开创性工作学习hmm对语义关系的上下文进行建模,以评估提取。这是非常昂贵的,并且为上下文显示的语义并不显式。在这项工作中,我们引入了一种轻量级的、显式的语义方法来进行稀疏信息提取。我们使用由数百万个概念、实体和属性组成的大型语义网络来显式地建模语义关系的上下文。实验表明,我们的方法在保持更高效率的同时,比最先进的基于HMM的方法提高了至少11.2%的提取f分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信