Fingerspelling Recognition with Semi-Markov Conditional Random Fields

Taehwan Kim, Gregory Shakhnarovich, Karen Livescu
{"title":"Fingerspelling Recognition with Semi-Markov Conditional Random Fields","authors":"Taehwan Kim, Gregory Shakhnarovich, Karen Livescu","doi":"10.1109/ICCV.2013.192","DOIUrl":null,"url":null,"abstract":"Recognition of gesture sequences is in general a very difficult problem, but in certain domains the difficulty may be mitigated by exploiting the domain's ``grammar''. One such grammatically constrained gesture sequence domain is sign language. In this paper we investigate the case of finger spelling recognition, which can be very challenging due to the quick, small motions of the fingers. Most prior work on this task has assumed a closed vocabulary of finger spelled words, here we study the more natural open-vocabulary case, where the only domain knowledge is the possible finger spelled letters and statistics of their sequences. We develop a semi-Markov conditional model approach, where feature functions are defined over segments of video and their corresponding letter labels. We use classifiers of letters and linguistic hand shape features, along with expected motion profiles, to define segmental feature functions. This approach improves letter error rate (Levenshtein distance between hypothesized and correct letter sequences) from 16.3% using a hidden Markov model baseline to 11.6% using the proposed semi-Markov model.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"33 1","pages":"1521-1528"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Recognition of gesture sequences is in general a very difficult problem, but in certain domains the difficulty may be mitigated by exploiting the domain's ``grammar''. One such grammatically constrained gesture sequence domain is sign language. In this paper we investigate the case of finger spelling recognition, which can be very challenging due to the quick, small motions of the fingers. Most prior work on this task has assumed a closed vocabulary of finger spelled words, here we study the more natural open-vocabulary case, where the only domain knowledge is the possible finger spelled letters and statistics of their sequences. We develop a semi-Markov conditional model approach, where feature functions are defined over segments of video and their corresponding letter labels. We use classifiers of letters and linguistic hand shape features, along with expected motion profiles, to define segmental feature functions. This approach improves letter error rate (Levenshtein distance between hypothesized and correct letter sequences) from 16.3% using a hidden Markov model baseline to 11.6% using the proposed semi-Markov model.
基于半马尔可夫条件随机场的指纹拼写识别
手势序列的识别通常是一个非常困难的问题,但在某些领域,通过利用该领域的“语法”可以减轻难度。其中一个受语法约束的手势序列域就是手语。在本文中,我们研究了手指拼写识别的情况,由于手指的快速,小的运动,这可能是非常具有挑战性的。大多数先前的工作都假设了一个封闭的手指拼写单词词汇表,这里我们研究了更自然的开放词汇表情况,其中唯一的领域知识是可能的手指拼写字母及其序列的统计。我们开发了一种半马尔可夫条件模型方法,其中在视频片段及其相应的字母标签上定义特征函数。我们使用字母和语言手部形状特征的分类器,以及预期的运动轮廓,来定义分段特征函数。该方法将字母错误率(假设和正确字母序列之间的Levenshtein距离)从使用隐马尔可夫模型基线的16.3%提高到使用所提出的半马尔可夫模型的11.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信