Characterization of wavelets associated with $AB$-MRA on $L^2(\mathbb R^n)$

IF 0.5 Q3 MATHEMATICS
O. Ahmad, M. Y. Bhat, N. Sheikh
{"title":"Characterization of wavelets associated with $AB$-MRA on $L^2(\\mathbb R^n)$","authors":"O. Ahmad, M. Y. Bhat, N. Sheikh","doi":"10.52846/ami.v48i1.1446","DOIUrl":null,"url":null,"abstract":"A wavelet with composite dilations is a function generating an orthonormal basis or a Parseval frame for $L^2(\\mathbb R^n)$ under the action of lattice translations and dilations by products of elements drawn from non-commuting matrix sets $A$ and $B$. Typically, the members of $B$ are matrices whose eigenvalues have magnitude one, while the members of $A$ are matrices expanding on a proper subspace of $\\mathbb R^n$. In this paper, we provide the characterization of composite wavelets based on results of affine and quasi affine frames. Furthermore all the composite wavelets associated with $AB$-MRA on $L^2(\\mathbb R^n)$ are also characterized.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"22 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v48i1.1446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A wavelet with composite dilations is a function generating an orthonormal basis or a Parseval frame for $L^2(\mathbb R^n)$ under the action of lattice translations and dilations by products of elements drawn from non-commuting matrix sets $A$ and $B$. Typically, the members of $B$ are matrices whose eigenvalues have magnitude one, while the members of $A$ are matrices expanding on a proper subspace of $\mathbb R^n$. In this paper, we provide the characterization of composite wavelets based on results of affine and quasi affine frames. Furthermore all the composite wavelets associated with $AB$-MRA on $L^2(\mathbb R^n)$ are also characterized.
L^2(\mathbb R^n)$上与$AB$-MRA相关的小波的表征
具有复合展开的小波是在晶格平移和展开的作用下,由非交换矩阵集合A和B的元素积生成L^2(\mathbb R^n)$的标准正交基或Parseval框架的函数。通常,$B$的元素是特征值大小为1的矩阵,而$A$的元素是在$\mathbb R^n$的固有子空间上展开的矩阵。本文基于仿射和拟仿射框架的结果,给出了复合小波的表征。此外,还描述了L^2(\mathbb R^n)$上与$AB$-MRA相关的所有复合小波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信