Julián Arenas-Guerrero, David Chaves-Fraga, Jhon Toledo, María S. Pérez, Óscar Corcho
{"title":"Morph-KGC: Scalable knowledge graph materialization with mapping partitions","authors":"Julián Arenas-Guerrero, David Chaves-Fraga, Jhon Toledo, María S. Pérez, Óscar Corcho","doi":"10.3233/sw-223135","DOIUrl":null,"url":null,"abstract":"Knowledge graphs are often constructed from heterogeneous data sources, using declarative rules that map them to a target ontology and materializing them into RDF. When these data sources are large, the materialization of the entire knowledge graph may be computationally expensive and not suitable for those cases where a rapid materialization is required. In this work, we propose an approach to overcome this limitation, based on the novel concept of mapping partitions. Mapping partitions are defined as groups of mapping rules that generate disjoint subsets of the knowledge graph. Each of these groups can be processed separately, reducing the total amount of memory and execution time required by the materialization process. We have included this optimization in our materialization engine Morph-KGC, and we have evaluated it over three different benchmarks. Our experimental results show that, compared with state-of-the-art techniques, the use of mapping partitions in Morph-KGC presents the following advantages: (i) it decreases significantly the time required for materialization, (ii) it reduces the maximum peak of memory used, and (iii) it scales to data sizes that other engines are not capable of processing currently.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"20 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-223135","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 19
Abstract
Knowledge graphs are often constructed from heterogeneous data sources, using declarative rules that map them to a target ontology and materializing them into RDF. When these data sources are large, the materialization of the entire knowledge graph may be computationally expensive and not suitable for those cases where a rapid materialization is required. In this work, we propose an approach to overcome this limitation, based on the novel concept of mapping partitions. Mapping partitions are defined as groups of mapping rules that generate disjoint subsets of the knowledge graph. Each of these groups can be processed separately, reducing the total amount of memory and execution time required by the materialization process. We have included this optimization in our materialization engine Morph-KGC, and we have evaluated it over three different benchmarks. Our experimental results show that, compared with state-of-the-art techniques, the use of mapping partitions in Morph-KGC presents the following advantages: (i) it decreases significantly the time required for materialization, (ii) it reduces the maximum peak of memory used, and (iii) it scales to data sizes that other engines are not capable of processing currently.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.