{"title":"A Semi-analytic method for solving singularly perturbed twin-Layer Problems with a turning Point","authors":"Süleyman Cengizci, D. Kumar, M. Atay","doi":"10.3846/mma.2023.14953","DOIUrl":null,"url":null,"abstract":"This computational study investigates a class of singularly perturbed second-order boundary-value problems having dual (twin) boundary layers and simple turning points. It is well-known that the classical discretization methods fail to resolve sharp gradients arising in solving singularly perturbed differential equations as the perturbation (diffusion) parameter decreases, i.e., ε → 0+. To this end, this paper proposes a semi-analytic hybrid method consisting of a numerical procedure based on finite differences and an asymptotic method called the Successive Complementary Expansion Method (SCEM) to approximate the solution of such problems. Two numerical experiments are provided to demonstrate the method’s implementation and to evaluate its computational performance. Several comparisons with the numerical results existing in the literature are also made. The numerical observations reveal that the hybrid method leads to good solution profiles and achieves this in only a few iterations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.14953","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This computational study investigates a class of singularly perturbed second-order boundary-value problems having dual (twin) boundary layers and simple turning points. It is well-known that the classical discretization methods fail to resolve sharp gradients arising in solving singularly perturbed differential equations as the perturbation (diffusion) parameter decreases, i.e., ε → 0+. To this end, this paper proposes a semi-analytic hybrid method consisting of a numerical procedure based on finite differences and an asymptotic method called the Successive Complementary Expansion Method (SCEM) to approximate the solution of such problems. Two numerical experiments are provided to demonstrate the method’s implementation and to evaluate its computational performance. Several comparisons with the numerical results existing in the literature are also made. The numerical observations reveal that the hybrid method leads to good solution profiles and achieves this in only a few iterations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.