Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable

Yves Achdou , Christine Bernardi
{"title":"Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable","authors":"Yves Achdou ,&nbsp;Christine Bernardi","doi":"10.1016/S0764-4442(01)02071-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider Darcy's equations with variable permeability coefficient in a two- or three-dimensional domain. We propose a finite volume scheme, which turns out to be equivalent to a finite element problem, and we derive optimal a priori error estimates. We describe error indicators and prove that they provide an appropriate tool for mesh adaptivity, since estimates allow to compare them with the error.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 693-698"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02071-7","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201020717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We consider Darcy's equations with variable permeability coefficient in a two- or three-dimensional domain. We propose a finite volume scheme, which turns out to be equivalent to a finite element problem, and we derive optimal a priori error estimates. We describe error indicators and prove that they provide an appropriate tool for mesh adaptivity, since estimates allow to compare them with the error.

具有可变渗透率的达西方程的自适应体积或有限元图
我们在二维或三维范围内考虑具有变磁导率系数的达西方程。我们提出了一个有限体积方案,结果证明它相当于一个有限元问题,我们得到了最优的先验误差估计。我们描述了误差指标,并证明它们为网格自适应提供了适当的工具,因为估计允许将它们与误差进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信