Entropy-information inequalities under curvature-dimension conditions for continuous-time Markov chains

Frederic Weber
{"title":"Entropy-information inequalities under curvature-dimension conditions for continuous-time Markov chains","authors":"Frederic Weber","doi":"10.1214/21-EJP627","DOIUrl":null,"url":null,"abstract":"In the setting of reversible continuous-time Markov chains, the $CD_\\Upsilon$ condition has been shown recently to be a consistent analogue to the Bakry-Emery condition in the diffusive setting in terms of proving Li-Yau inequalities under a finite dimension term and proving the modified logarithmic Sobolev inequality under a positive curvature bound. In this article we examine the case where both is given, a finite dimension term and a positive curvature bound. For this purpose we introduce the $CD_\\Upsilon(\\kappa,F)$ condition, where the dimension term is expressed by a so called $CD$-function $F$. We derive functional inequalities relating the entropy to the Fisher information, which we will call entropy-information inequalities. Further, we deduce applications of entropy-information inequalities such as ultracontractivity bounds, exponential integrability of Lipschitz functions, finite diameter bounds and a modified version of the celebrated Nash inequality.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-EJP627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the setting of reversible continuous-time Markov chains, the $CD_\Upsilon$ condition has been shown recently to be a consistent analogue to the Bakry-Emery condition in the diffusive setting in terms of proving Li-Yau inequalities under a finite dimension term and proving the modified logarithmic Sobolev inequality under a positive curvature bound. In this article we examine the case where both is given, a finite dimension term and a positive curvature bound. For this purpose we introduce the $CD_\Upsilon(\kappa,F)$ condition, where the dimension term is expressed by a so called $CD$-function $F$. We derive functional inequalities relating the entropy to the Fisher information, which we will call entropy-information inequalities. Further, we deduce applications of entropy-information inequalities such as ultracontractivity bounds, exponential integrability of Lipschitz functions, finite diameter bounds and a modified version of the celebrated Nash inequality.
连续时间马尔可夫链曲率维条件下的熵信息不等式
在可逆连续时间马尔可夫链的情况下,从证明有限维项下的Li-Yau不等式和证明正曲率界下的修正对数Sobolev不等式两方面证明了$CD_\Upsilon$条件与扩散情况下的Bakry-Emery条件是一致的类比。在这篇文章中,我们研究了两者都给定的情况,即有限维项和正曲率界。为此,我们引入$CD_\Upsilon(\kappa,F)$条件,其中的维数项由所谓的$CD$-函数$F$表示。我们推导出关于熵和费雪信息的函数不等式,我们称之为熵信息不等式。进一步,我们推导了熵-信息不等式的应用,如超收缩界、Lipschitz函数的指数可积性、有限直径界和著名的纳什不等式的修正版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信