Effective factors on thermal conductivity of stochastic structures open cell metal foams

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL
M. Saljooghi, A. Raisi, Amir Farahbakhsh
{"title":"Effective factors on thermal conductivity of stochastic structures open cell metal foams","authors":"M. Saljooghi, A. Raisi, Amir Farahbakhsh","doi":"10.1051/meca/2020028","DOIUrl":null,"url":null,"abstract":"Effective thermal conductivity (ETC) is a considerable thermo-physical property in design, manufacturing, and usage of multifunctional equipment that benefit cellular structures such as open-cell metal foams. An accurate understanding of key parameters effecting on ETC is classified by: Analytical, Numerical and Experimental approaches. In this study, a comprehensive investigation based on mentioned approaches is presented and a comparison between various factors affecting ETC including porosity, pore size, temperature, pressure and shape factor is made. Porosity and pore size, as main morphological features of open-cell metal foams, indicate structural characterization of them. Increase of porosity and pore size resulted decrease of ETC. The temperature effects on ETC in case of temperatures lower than 250 °C is ignorable although for temperature higher than 500 °C with change of heat transfer mechanism temperature plays a primary role in determining ETC. Few studies have been made on pressure parameter that illustrated its effect on ETC is insignificant. Multiple manufacturing methods produce different topological structures so; the influence of shape factor on ETC requires more efforts to reach a better understanding. Finally, applicable techniques for measuring ETC are briefly discussed.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2020028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3

Abstract

Effective thermal conductivity (ETC) is a considerable thermo-physical property in design, manufacturing, and usage of multifunctional equipment that benefit cellular structures such as open-cell metal foams. An accurate understanding of key parameters effecting on ETC is classified by: Analytical, Numerical and Experimental approaches. In this study, a comprehensive investigation based on mentioned approaches is presented and a comparison between various factors affecting ETC including porosity, pore size, temperature, pressure and shape factor is made. Porosity and pore size, as main morphological features of open-cell metal foams, indicate structural characterization of them. Increase of porosity and pore size resulted decrease of ETC. The temperature effects on ETC in case of temperatures lower than 250 °C is ignorable although for temperature higher than 500 °C with change of heat transfer mechanism temperature plays a primary role in determining ETC. Few studies have been made on pressure parameter that illustrated its effect on ETC is insignificant. Multiple manufacturing methods produce different topological structures so; the influence of shape factor on ETC requires more efforts to reach a better understanding. Finally, applicable techniques for measuring ETC are briefly discussed.
随机结构开孔金属泡沫导热系数的影响因素
有效热导率(ETC)在设计、制造和使用多功能设备时是一个重要的热物理特性,有利于多孔结构,如开孔金属泡沫。对影响ETC的关键参数的准确理解分为:解析法、数值法和实验法。本研究在上述方法的基础上进行了综合研究,并对影响ETC的孔隙度、孔径、温度、压力、形状等因素进行了比较。孔隙率和孔径是开孔金属泡沫材料的主要形态特征,反映了其结构特征。孔隙率和孔径的增大导致ETC的减小。当温度低于250℃时,温度对ETC的影响可以忽略不计,而当温度高于500℃时,随着传热机理的变化,温度对ETC的影响起主要作用。很少有研究表明压力参数对ETC的影响不显著。多种制造方法产生不同的拓扑结构;形状因子对ETC的影响还有待进一步研究。最后简要讨论了ETC测量的适用技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics & Industry
Mechanics & Industry ENGINEERING, MECHANICAL-MECHANICS
CiteScore
2.80
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: An International Journal on Mechanical Sciences and Engineering Applications With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities. Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信