GPT understands, too

{"title":"GPT understands, too","authors":"","doi":"10.1016/j.aiopen.2023.08.012","DOIUrl":null,"url":null,"abstract":"<div><div>Prompting a pretrained language model with natural language patterns has been proved effective for natural language understanding (NLU). However, our preliminary study reveals that manual discrete prompts often lead to unstable performance—<em>e.g.</em>, changing a single word in the prompt might result in substantial performance drop. We propose a novel method P-Tuning that employs trainable continuous prompt embeddings in concatenation with discrete prompts. Empirically, P-Tuning not only stabilizes training by minimizing the gap between various discrete prompts, but also improves performance by a sizeable margin on a wide range of NLU tasks including LAMA and SuperGLUE. P-Tuning is generally effective for both frozen and tuned language models, under both the fully-supervised and few-shot settings.</div></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"5 ","pages":"Pages 208-215"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651023000141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prompting a pretrained language model with natural language patterns has been proved effective for natural language understanding (NLU). However, our preliminary study reveals that manual discrete prompts often lead to unstable performance—e.g., changing a single word in the prompt might result in substantial performance drop. We propose a novel method P-Tuning that employs trainable continuous prompt embeddings in concatenation with discrete prompts. Empirically, P-Tuning not only stabilizes training by minimizing the gap between various discrete prompts, but also improves performance by a sizeable margin on a wide range of NLU tasks including LAMA and SuperGLUE. P-Tuning is generally effective for both frozen and tuned language models, under both the fully-supervised and few-shot settings.
GPT 也理解
事实证明,用自然语言模式提示预训练语言模型对自然语言理解(NLU)非常有效。然而,我们的初步研究表明,人工离散提示通常会导致性能不稳定,例如,改变提示中的一个单词就可能导致性能大幅下降。我们提出了一种新方法 P-Tuning,它将可训练的连续提示嵌入与离散提示串联起来。根据经验,P-Tuning 不仅能通过最小化各种离散提示之间的差距来稳定训练,还能在包括 LAMA 和 SuperGLUE 在内的各种 NLU 任务中大幅提高性能。P-Tuning 对冻结语言模型和调整语言模型都普遍有效,而且在完全监督和少数几个镜头的设置下都是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信