R. Likamwa, Yunhui Hou, Yuan Gao, M. Polansky, Lin Zhong
{"title":"RedEye: Analog ConvNet Image Sensor Architecture for Continuous Mobile Vision","authors":"R. Likamwa, Yunhui Hou, Yuan Gao, M. Polansky, Lin Zhong","doi":"10.1145/3007787.3001164","DOIUrl":null,"url":null,"abstract":"Continuous mobile vision is limited by the inability to efficiently capture image frames and process vision features. This is largely due to the energy burden of analog readout circuitry, data traffic, and intensive computation. To promote efficiency, we shift early vision processing into the analog domain. This results in RedEye, an analog convolutional image sensor that performs layers of a convolutional neural network in the analog domain before quantization. We design RedEye to mitigate analog design complexity, using a modular column-parallel design to promote physical design reuse and algorithmic cyclic reuse. RedEye uses programmable mechanisms to admit noise for tunable energy reduction. Compared to conventional systems, RedEye reports an 85% reduction in sensor energy, 73% reduction in cloudlet-based system energy, and a 45% reduction in computation-based system energy.","PeriodicalId":6634,"journal":{"name":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","volume":"43 1","pages":"255-266"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"186","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007787.3001164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 186
Abstract
Continuous mobile vision is limited by the inability to efficiently capture image frames and process vision features. This is largely due to the energy burden of analog readout circuitry, data traffic, and intensive computation. To promote efficiency, we shift early vision processing into the analog domain. This results in RedEye, an analog convolutional image sensor that performs layers of a convolutional neural network in the analog domain before quantization. We design RedEye to mitigate analog design complexity, using a modular column-parallel design to promote physical design reuse and algorithmic cyclic reuse. RedEye uses programmable mechanisms to admit noise for tunable energy reduction. Compared to conventional systems, RedEye reports an 85% reduction in sensor energy, 73% reduction in cloudlet-based system energy, and a 45% reduction in computation-based system energy.