{"title":"Modelling and Control of Ball and Beam System using Coefficient Diagram Method (CDM) based PID controller","authors":"B. Meenakshipriya , K. Kalpana","doi":"10.3182/20140313-3-IN-3024.00079","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a design methodology of a PID controller for an unstable ball and beam system based on Coefficient Diagram Method (CDM). Ball and beam system is a non-linear, unstable, double integrating system which is widely used as a bench mark control setup for evaluating various control strategies. Many PID controller design is developed for stable system however it is very less common for double integrating unstable system. Co-efficient Diagram Method (CDM) is one of the recently developed controller design methodology based on algebraic approach. With CDM, it is easy to realize a controller under the conditions of stability, robustness and time domain performance. In this paper, CDM based PID (CDM-PID) controller parameters are computed based on the dynamics of ball and beam system which is developed using Euler – Lagrangian Approach. To evaluate the performance of proposed CDM-PID controller, set-point tracking and disturbance rejection analysis of ball and beam system are carried out through simulation runs in MATLAB-SIMULINK platform. The results are compared with the conventional Ziegler Nicholas – PID (ZN-PID) controller in terms of Error indices (Integral Squared Error (ISE) and Integral Absolute Error (IAE)) and Quality indices (Rise time (t<sub>r</sub>), Settling time (t<sub>s</sub>) and Maximum peak overshoot (%M<sub>p</sub>)). The results reveal that the CDM-PID controller maintains good stability of the ball's position with reduced percentage of error than ZN-PID controller.</p></div>","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"47 1","pages":"Pages 620-626"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3182/20140313-3-IN-3024.00079","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474667016327203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This paper introduces a design methodology of a PID controller for an unstable ball and beam system based on Coefficient Diagram Method (CDM). Ball and beam system is a non-linear, unstable, double integrating system which is widely used as a bench mark control setup for evaluating various control strategies. Many PID controller design is developed for stable system however it is very less common for double integrating unstable system. Co-efficient Diagram Method (CDM) is one of the recently developed controller design methodology based on algebraic approach. With CDM, it is easy to realize a controller under the conditions of stability, robustness and time domain performance. In this paper, CDM based PID (CDM-PID) controller parameters are computed based on the dynamics of ball and beam system which is developed using Euler – Lagrangian Approach. To evaluate the performance of proposed CDM-PID controller, set-point tracking and disturbance rejection analysis of ball and beam system are carried out through simulation runs in MATLAB-SIMULINK platform. The results are compared with the conventional Ziegler Nicholas – PID (ZN-PID) controller in terms of Error indices (Integral Squared Error (ISE) and Integral Absolute Error (IAE)) and Quality indices (Rise time (tr), Settling time (ts) and Maximum peak overshoot (%Mp)). The results reveal that the CDM-PID controller maintains good stability of the ball's position with reduced percentage of error than ZN-PID controller.