Point mass dynamics on spherical hypersurfaces

D. Dritschel
{"title":"Point mass dynamics on spherical hypersurfaces","authors":"D. Dritschel","doi":"10.1098/rsta.2018.0349","DOIUrl":null,"url":null,"abstract":"The equations of motion are derived for a system of point masses on the (hyper)surface Sn of a sphere embedded in Rn+1 for any dimension n > 1. Owing to the symmetry of the surface, the equations take a particularly simple form when using the Cartesian coordinates of Rn+1. The constraint that the distance of the jth mass ∥rj∥ from the origin remains constant (i.e. each mass remains on the surface) is automatically satisfied by the equations of motion. Moreover, the equations are a Hamiltonian system with a conserved energy as well as a host of conserved angular momenta. Several examples are illustrated in dimensions n = 2 (the sphere) and n = 3 (the glome). This article is part of the theme issue ‘Topological and geometrical aspects of mass and vortex dynamics’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"127 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2018.0349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The equations of motion are derived for a system of point masses on the (hyper)surface Sn of a sphere embedded in Rn+1 for any dimension n > 1. Owing to the symmetry of the surface, the equations take a particularly simple form when using the Cartesian coordinates of Rn+1. The constraint that the distance of the jth mass ∥rj∥ from the origin remains constant (i.e. each mass remains on the surface) is automatically satisfied by the equations of motion. Moreover, the equations are a Hamiltonian system with a conserved energy as well as a host of conserved angular momenta. Several examples are illustrated in dimensions n = 2 (the sphere) and n = 3 (the glome). This article is part of the theme issue ‘Topological and geometrical aspects of mass and vortex dynamics’.
球面超曲面上的点质量动力学
导出了嵌入在Rn+1中的球体(超)表面Sn上的质点系统在任意维数n > 1下的运动方程。由于曲面的对称性,当使用笛卡尔坐标Rn+1时,方程的形式特别简单。运动方程自动满足第j个质量∥rj∥到原点的距离保持恒定(即每个质量都保持在表面上)的约束。此外,方程是一个守恒能量和守恒角动量的哈密顿系统。在维度n = 2(球体)和n = 3(光晕)中说明了几个例子。本文是主题问题“质量和涡旋动力学的拓扑和几何方面”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信