Gevrey regularity for the Vlasov-Poisson system

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Renato Velozo Ruiz
{"title":"Gevrey regularity for the Vlasov-Poisson system","authors":"Renato Velozo Ruiz","doi":"10.1016/j.anihpc.2020.10.006","DOIUrl":null,"url":null,"abstract":"<div><p>We prove propagation of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey regularity <span><math><mo>(</mo><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span> for the Vlasov-Poisson system on <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> using a Fourier space method in analogy to the results proved for the 2D-Euler system in <span>[20]</span> and <span>[23]</span>. More precisely, we give quantitative estimates for the growth of the <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey norm and decay of the regularity radius for the solution of the system in terms of the force field and the volume of the support in the velocity variable of the distribution of matter. As an application, we show global existence of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey solutions (<span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>) for the Vlasov-Poisson system in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Furthermore, the propagation of Gevrey regularity can be easily modified to obtain the same result in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. In particular, this implies global existence of analytic <span><math><mo>(</mo><mi>s</mi><mo>=</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey solutions (<span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>) for the Vlasov-Poisson system in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.10.006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920301116","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We prove propagation of 1s-Gevrey regularity (s(0,1]) for the Vlasov-Poisson system on Td×Rd using a Fourier space method in analogy to the results proved for the 2D-Euler system in [20] and [23]. More precisely, we give quantitative estimates for the growth of the 1s-Gevrey norm and decay of the regularity radius for the solution of the system in terms of the force field and the volume of the support in the velocity variable of the distribution of matter. As an application, we show global existence of 1s-Gevrey solutions (s(0,1)) for the Vlasov-Poisson system in T3×R3. Furthermore, the propagation of Gevrey regularity can be easily modified to obtain the same result in Rd×Rd. In particular, this implies global existence of analytic (s=1) and 1s-Gevrey solutions (s(0,1)) for the Vlasov-Poisson system in R3×R3.

Vlasov-Poisson系统的Gevrey正则性
我们使用傅里叶空间方法证明了Td×Rd上Vlasov-Poisson系统的1s-Gevrey正则性(s∈(0,1])的传播,类似于[20]和[23]中对2D-Euler系统的证明结果。更准确地说,我们给出了系统解的s- gevrey范数增长和正则半径衰减的定量估计,这是在物质分布的速度变量中,根据力场和支撑体的体积给出的。作为应用,我们证明了T3×R3中Vlasov-Poisson系统的s- gevrey解(s∈(0,1))的全局存在性。此外,可以很容易地修改Gevrey正则的传播,以在Rd×Rd中获得相同的结果。特别地,这暗示了R3×R3中Vlasov-Poisson系统的解析解(s=1)和s- gevrey解(s∈(0,1))的整体存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信