{"title":"Limit behaviour of random walks on Ζm with two-sided membrane","authors":"V. Bogdanskii, I. Pavlyukevich, A. Pilipenko","doi":"10.1051/ps/2022009","DOIUrl":null,"url":null,"abstract":"We study Markov chains on Z m , m ≥ 2, that behave like a standard symmetric random walk outside of the hyperplane (membrane) H = {0} × Z m-1 . The exit probabilities from the membrane (penetration probabilities) H are periodic and also depend on the incoming direction to H, what makes the membrane H two-sided. Moreover, sliding along the membrane is allowed. We show that the natural scaling limit of such Markov chains is a m-dimensional diffusion whose first coordinate is a skew Brownian motion and the other m-1 coordinates is a Brownian motion with a singular drift controlled by the local time of the first coordinate at 0. In the proof we utilize a martingale characterization of the Walsh Brownian motion and determine the effective permeability and slide direction. Eventually, a similar convergence theorem is established for the one-sided membrane without slides and random iid penetration probabilities.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2022009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
We study Markov chains on Z m , m ≥ 2, that behave like a standard symmetric random walk outside of the hyperplane (membrane) H = {0} × Z m-1 . The exit probabilities from the membrane (penetration probabilities) H are periodic and also depend on the incoming direction to H, what makes the membrane H two-sided. Moreover, sliding along the membrane is allowed. We show that the natural scaling limit of such Markov chains is a m-dimensional diffusion whose first coordinate is a skew Brownian motion and the other m-1 coordinates is a Brownian motion with a singular drift controlled by the local time of the first coordinate at 0. In the proof we utilize a martingale characterization of the Walsh Brownian motion and determine the effective permeability and slide direction. Eventually, a similar convergence theorem is established for the one-sided membrane without slides and random iid penetration probabilities.
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.