Model centroids for the simplification of Kernel Density estimators

Olivier Schwander, F. Nielsen
{"title":"Model centroids for the simplification of Kernel Density estimators","authors":"Olivier Schwander, F. Nielsen","doi":"10.1109/ICASSP.2012.6287989","DOIUrl":null,"url":null,"abstract":"Gaussian mixture models are a widespread tool for modeling various and complex probability density functions. They can be estimated using Expectation- Maximization or Kernel Density Estimation. Expectation- Maximization leads to compact models but may be expensive to compute whereas Kernel Density Estimation yields to large models which are cheap to build. In this paper we present new methods to get high-quality models that are both compact and fast to compute. This is accomplished with clustering methods and centroids computation. The quality of the resulting mixtures is evaluated in terms of log-likelihood and Kullback-Leibler divergence using examples from a bioinformatics application.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"737-740"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6287989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Gaussian mixture models are a widespread tool for modeling various and complex probability density functions. They can be estimated using Expectation- Maximization or Kernel Density Estimation. Expectation- Maximization leads to compact models but may be expensive to compute whereas Kernel Density Estimation yields to large models which are cheap to build. In this paper we present new methods to get high-quality models that are both compact and fast to compute. This is accomplished with clustering methods and centroids computation. The quality of the resulting mixtures is evaluated in terms of log-likelihood and Kullback-Leibler divergence using examples from a bioinformatics application.
简化核密度估计的模型质心
高斯混合模型是建模各种复杂概率密度函数的广泛工具。它们可以使用期望最大化或核密度估计来估计。期望-最大化导致紧凑的模型,但可能计算昂贵,而核密度估计产生大型模型,构建成本低。在本文中,我们提出了新的方法,以获得高质量的模型,既紧凑又快速计算。这是通过聚类方法和质心计算来实现的。使用生物信息学应用的示例,根据对数似然和Kullback-Leibler散度来评估所得混合物的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信