SQL-to-MapReduce Translation for Efficient OLAP Query Processing with MapReduce

Hyeon Gyu Kim
{"title":"SQL-to-MapReduce Translation for Efficient OLAP Query Processing with MapReduce","authors":"Hyeon Gyu Kim","doi":"10.14257/IJDTA.2017.10.6.05","DOIUrl":null,"url":null,"abstract":"Substantial research has addressed that frequent I/O required for scalability and faulttolerance sacrifices efficiency of MapReduce. Regarding this, our previous work discussed a method to reduce I/O cost when processing OLAP queries with MapReduce. The method can be implemented simply by providing an SQL-to-MapReduce translator on top of the MapReduce framework and needs not modify the underlying framework. In this paper, we present techniques to translate SQL queries into corresponding MapReduce programs which support the method discussed in our previous work for I/O cost reduction.","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"19 1","pages":"61-70"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJDTA.2017.10.6.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Substantial research has addressed that frequent I/O required for scalability and faulttolerance sacrifices efficiency of MapReduce. Regarding this, our previous work discussed a method to reduce I/O cost when processing OLAP queries with MapReduce. The method can be implemented simply by providing an SQL-to-MapReduce translator on top of the MapReduce framework and needs not modify the underlying framework. In this paper, we present techniques to translate SQL queries into corresponding MapReduce programs which support the method discussed in our previous work for I/O cost reduction.
使用MapReduce进行高效OLAP查询处理的sql到MapReduce转换
大量的研究表明,可伸缩性和容错所需的频繁I/O会牺牲MapReduce的效率。关于这一点,我们之前的工作讨论了使用MapReduce处理OLAP查询时减少I/O成本的方法。该方法可以简单地通过在MapReduce框架之上提供SQL-to-MapReduce转换器来实现,而不需要修改底层框架。在本文中,我们介绍了将SQL查询转换为相应MapReduce程序的技术,这些程序支持我们之前的工作中讨论的降低I/O成本的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信