MDL model selection using the ML plug-in code

S. D. Rooij, P. Grünwald
{"title":"MDL model selection using the ML plug-in code","authors":"S. D. Rooij, P. Grünwald","doi":"10.1109/ISIT.2005.1523439","DOIUrl":null,"url":null,"abstract":"We analyse the behaviour of the ML plug-in code, also known as the Rissanen-Dawid prequential ML code, relative to single parameter exponential families M. If the data are i.i.d. according to an (essentially) arbitrary P, then the redundancy grows at 1/2c log n. We find that, in contrast to other important universal codes such as the 2-part MDL, Shtarkov and Bayesian codes where c = 1, here c equals the ratio between the variance of P and the variance of the element of M that is closest to P in KL-divergence. We show how this behaviour can impair model selection performance in a simple setting in which we select between the Poisson and geometric models","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyse the behaviour of the ML plug-in code, also known as the Rissanen-Dawid prequential ML code, relative to single parameter exponential families M. If the data are i.i.d. according to an (essentially) arbitrary P, then the redundancy grows at 1/2c log n. We find that, in contrast to other important universal codes such as the 2-part MDL, Shtarkov and Bayesian codes where c = 1, here c equals the ratio between the variance of P and the variance of the element of M that is closest to P in KL-divergence. We show how this behaviour can impair model selection performance in a simple setting in which we select between the Poisson and geometric models
使用ML插件代码进行MDL模型选择
我们分析了ML插件代码的行为,也称为rissanen - david先验ML代码,相对于单参数指数族M.如果数据是根据(本质上)任意P的i.id,那么冗余度以1/2c log n增长。我们发现,与其他重要的通用代码相比,如2部分MDL, Shtarkov和贝叶斯代码,其中c = 1,这里c等于P的方差与k -散度中最接近P的M元素的方差之比。我们在一个简单的设置中展示了这种行为如何损害模型选择性能,其中我们在泊松模型和几何模型之间进行选择
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信