Automated probabilistic modeling for relational data

Sameer Singh, T. Graepel
{"title":"Automated probabilistic modeling for relational data","authors":"Sameer Singh, T. Graepel","doi":"10.1145/2505515.2507828","DOIUrl":null,"url":null,"abstract":"Probabilistic graphical model representations of relational data provide a number of desired features, such as inference of missing values, detection of errors, visualization of data, and probabilistic answers to relational queries. However, adoption has been slow due to the high level of expertise expected both in probability and in the domain from the user. Instead of requiring a domain expert to specify the probabilistic dependencies of the data, we present an approach that uses the relational DB schema to automatically construct a Bayesian graphical model for a database. This resulting model contains customized distributions for the attributes, latent variables that cluster the records, and factors that reflect and represent the foreign key links, whilst allowing efficient inference. Experiments demonstrate the accuracy of the model and scalability of inference on synthetic and real-world data.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2507828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Probabilistic graphical model representations of relational data provide a number of desired features, such as inference of missing values, detection of errors, visualization of data, and probabilistic answers to relational queries. However, adoption has been slow due to the high level of expertise expected both in probability and in the domain from the user. Instead of requiring a domain expert to specify the probabilistic dependencies of the data, we present an approach that uses the relational DB schema to automatically construct a Bayesian graphical model for a database. This resulting model contains customized distributions for the attributes, latent variables that cluster the records, and factors that reflect and represent the foreign key links, whilst allowing efficient inference. Experiments demonstrate the accuracy of the model and scalability of inference on synthetic and real-world data.
关系数据的自动概率建模
关系数据的概率图形模型表示提供了许多所需的特性,例如缺失值的推断、错误检测、数据的可视化以及对关系查询的概率性回答。然而,由于对用户在概率和领域方面的高水平专业知识的期望,采用速度很慢。我们提出了一种方法,该方法使用关系数据库模式自动为数据库构建贝叶斯图形模型,而不是要求领域专家指定数据的概率依赖性。这个结果模型包含属性的自定义分布、聚集记录的潜在变量以及反映和表示外键链接的因素,同时允许有效的推断。实验证明了该模型在综合数据和实际数据上的准确性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信