{"title":"Bootstrap for integer‐valued GARCH(p, q) processes","authors":"M. Neumann","doi":"10.1111/stan.12238","DOIUrl":null,"url":null,"abstract":"We consider integer‐valued processes with a linear or nonlinear generalized autoregressive conditional heteroscedastic models structure, where the count variables given the past follow a Poisson distribution. We show that a contraction condition imposed on the intensity function yields a contraction property of the Markov kernel of the process. This allows almost effortless proofs of the existence and uniqueness of a stationary distribution as well as of absolute regularity of the count process. As our main result, we construct a coupling of the original process and a model‐based bootstrap counterpart. Using a contraction property of the Markov kernel of the coupled process we obtain bootstrap consistency for different types of statistics.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"7 1","pages":"343 - 363"},"PeriodicalIF":1.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12238","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4
Abstract
We consider integer‐valued processes with a linear or nonlinear generalized autoregressive conditional heteroscedastic models structure, where the count variables given the past follow a Poisson distribution. We show that a contraction condition imposed on the intensity function yields a contraction property of the Markov kernel of the process. This allows almost effortless proofs of the existence and uniqueness of a stationary distribution as well as of absolute regularity of the count process. As our main result, we construct a coupling of the original process and a model‐based bootstrap counterpart. Using a contraction property of the Markov kernel of the coupled process we obtain bootstrap consistency for different types of statistics.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.