Shrish Bajpai, Divyakant Sharma, Monauwer Alam, V. Chandel, A. Pandey, S. Tripathi
{"title":"Curvelet Transform Based Compression Algorithm for Low Resource Hyperspectral Image Sensors","authors":"Shrish Bajpai, Divyakant Sharma, Monauwer Alam, V. Chandel, A. Pandey, S. Tripathi","doi":"10.1155/2023/8961271","DOIUrl":null,"url":null,"abstract":"The wavelet transform is widely used in the task of hyperspectral image compression (HSIC). They have achieved outstanding performance in the compression of a hyperspectral (HS) image, which has attracted great interest. However, transform based hyperspectral image compression algorithm (HSICA) has low-coding gain than the other state of art HSIC algorithms. To solve this problem, this manuscript proposes a curvelet transform based HSIC algorithm. The curvelet transform is a multiscale mathematical transform that represents the curve and edges of the HS image more efficiently than the wavelet transform. The experiment results show that the proposed compression algorithm has high-coding gain, low-coding complexity, at par coding memory requirement, and works for both (lossy and lossless) compression. Thus, it is a suitable contender for the compression process in the HS image sensors.","PeriodicalId":23352,"journal":{"name":"Turkish J. Electr. Eng. Comput. Sci.","volume":"17 1","pages":"8961271:1-8961271:18"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish J. Electr. Eng. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8961271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The wavelet transform is widely used in the task of hyperspectral image compression (HSIC). They have achieved outstanding performance in the compression of a hyperspectral (HS) image, which has attracted great interest. However, transform based hyperspectral image compression algorithm (HSICA) has low-coding gain than the other state of art HSIC algorithms. To solve this problem, this manuscript proposes a curvelet transform based HSIC algorithm. The curvelet transform is a multiscale mathematical transform that represents the curve and edges of the HS image more efficiently than the wavelet transform. The experiment results show that the proposed compression algorithm has high-coding gain, low-coding complexity, at par coding memory requirement, and works for both (lossy and lossless) compression. Thus, it is a suitable contender for the compression process in the HS image sensors.