{"title":"Ambipolar decay of magnetic field in magnetars and the observed magnetar activities","authors":"B. Bhalla, M. Sinha","doi":"10.1142/S0217732321501443","DOIUrl":null,"url":null,"abstract":"Magnetars are comparatively young neutron stars with ultra-strong surface magnetic field in the range $10^{14-16}$ G. The old neutron stars have surface magnetic field some what less $\\sim 10^8$ G which clearly indicates the decay of field with time. One possible way of magnetic field decay is by ambipolar diffusion. We describe the general procedure to solve for the ambipolar velocity inside the star core without any approximation. With a realistic model of neutron star we determine the ambipolar velocity configuration inside the neutron star core and hence find the ambipolar decay rate and time scale which is consistent with the magnetar observations.","PeriodicalId":8437,"journal":{"name":"arXiv: High Energy Astrophysical Phenomena","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217732321501443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Magnetars are comparatively young neutron stars with ultra-strong surface magnetic field in the range $10^{14-16}$ G. The old neutron stars have surface magnetic field some what less $\sim 10^8$ G which clearly indicates the decay of field with time. One possible way of magnetic field decay is by ambipolar diffusion. We describe the general procedure to solve for the ambipolar velocity inside the star core without any approximation. With a realistic model of neutron star we determine the ambipolar velocity configuration inside the neutron star core and hence find the ambipolar decay rate and time scale which is consistent with the magnetar observations.