Modified differential evolution algorithm and its application in thermal process model identification

Changliang Liu, Ming-yang Yu
{"title":"Modified differential evolution algorithm and its application in thermal process model identification","authors":"Changliang Liu, Ming-yang Yu","doi":"10.1109/ISKE.2010.5680830","DOIUrl":null,"url":null,"abstract":"The mathematical model of the object in power plant is of extremely significance for the design and analysis of the thermal control system. There are many methods to identify the parameters of the desiring object. In this article, we adopt a modified form of a relatively effective yet simple algorithm called differential evolution algorithm (DE) which is a population based stochastic optimization approach. The differential evolution algorithm uses the difference of randomly sampled pairs of vectors in the population for its mutation operators and is applied mainly in real parameter optimization. Based on analysis of DE searching mechanism, the article proposed the improved differential evolution algorithm with self-adaptive parameters to promote its robust, optima searching capability and speed. In order to prove the effectiveness of the improved differential evolution algorithm, we work out relevant model identifying program on MATLAB and identify the mathematical models. Then we analyze the result using the method of comparing.","PeriodicalId":6417,"journal":{"name":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","volume":"26 1","pages":"450-453"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2010.5680830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The mathematical model of the object in power plant is of extremely significance for the design and analysis of the thermal control system. There are many methods to identify the parameters of the desiring object. In this article, we adopt a modified form of a relatively effective yet simple algorithm called differential evolution algorithm (DE) which is a population based stochastic optimization approach. The differential evolution algorithm uses the difference of randomly sampled pairs of vectors in the population for its mutation operators and is applied mainly in real parameter optimization. Based on analysis of DE searching mechanism, the article proposed the improved differential evolution algorithm with self-adaptive parameters to promote its robust, optima searching capability and speed. In order to prove the effectiveness of the improved differential evolution algorithm, we work out relevant model identifying program on MATLAB and identify the mathematical models. Then we analyze the result using the method of comparing.
改进差分进化算法及其在热工过程模型识别中的应用
火电厂热力控制对象的数学模型对热力控制系统的设计和分析具有十分重要的意义。有许多方法可以确定期望对象的参数。在本文中,我们采用了一种相对有效而简单的算法的改进形式,称为差分进化算法(DE),这是一种基于种群的随机优化方法。差分进化算法利用种群中随机采样的向量对的差异作为变异算子,主要应用于实参数优化。在分析DE搜索机制的基础上,提出了一种自适应参数的改进差分进化算法,提高了算法的鲁棒性、最优搜索能力和速度。为了证明改进的差分进化算法的有效性,在MATLAB上编写了相应的模型识别程序,并对数学模型进行了识别。然后采用比较法对结果进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信