Simulation of Self-Heating and Bulk Trapping Effects on Drain Current Static and Transient Characteristics of AlGaN/GaN HEMTs

P. Raja, N. Dasgupta, A. DasGupta
{"title":"Simulation of Self-Heating and Bulk Trapping Effects on Drain Current Static and Transient Characteristics of AlGaN/GaN HEMTs","authors":"P. Raja, N. Dasgupta, A. DasGupta","doi":"10.1109/icee44586.2018.8937897","DOIUrl":null,"url":null,"abstract":"Numerical device simulation studies of self-heating, buffer and barrier layer trapping effects on drain current characteristics of AlGaN/GaN high-electron mobility transistors (HEMTs) are carried out under static and dynamic operation modes. In simulation model, a buffer layer trap at $\\mathrm{E}_{C} -0.5$ eV, a barrier layer trap at $\\mathrm{E}_{C} -0.45$ eV, and self-heating effects are considered. The simulation results are validated with the measured data. The changes in the $\\mathrm{I}_{D}-\\mathrm{V}_{D}$ and $\\mathrm{I}_{D}-\\mathrm{V}_{G}$ characteristics at different trap concentrations $(10^{16}-10^{18}$ cm$^{-3})$ are predicted. The drain-lag turn-on transient simulations are performed to study the dynamic performance of the HEMTs. The self-heating effect on the drain current transient response is analyzed. To estimate the time constant of the trapping phenomena, transient characteristics are simulated by excluding self-heating effects. Similarly, the effect of trap density $(10^{16}-10^{18}$ cm$^{-3})$ on the transient response is reported and also transient characteristics are obtained at different trap energies $(\\mathrm{E}_{C} -0.1$ eV to $\\mathrm{E}_{C} -1.0$ eV). Simulation results reveal that the drop in the drain current under transient is mainly caused due to the channel temperature rise, whereas the magnitude of the transient current is affected by the buffer trap concentration.","PeriodicalId":6590,"journal":{"name":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee44586.2018.8937897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Numerical device simulation studies of self-heating, buffer and barrier layer trapping effects on drain current characteristics of AlGaN/GaN high-electron mobility transistors (HEMTs) are carried out under static and dynamic operation modes. In simulation model, a buffer layer trap at $\mathrm{E}_{C} -0.5$ eV, a barrier layer trap at $\mathrm{E}_{C} -0.45$ eV, and self-heating effects are considered. The simulation results are validated with the measured data. The changes in the $\mathrm{I}_{D}-\mathrm{V}_{D}$ and $\mathrm{I}_{D}-\mathrm{V}_{G}$ characteristics at different trap concentrations $(10^{16}-10^{18}$ cm$^{-3})$ are predicted. The drain-lag turn-on transient simulations are performed to study the dynamic performance of the HEMTs. The self-heating effect on the drain current transient response is analyzed. To estimate the time constant of the trapping phenomena, transient characteristics are simulated by excluding self-heating effects. Similarly, the effect of trap density $(10^{16}-10^{18}$ cm$^{-3})$ on the transient response is reported and also transient characteristics are obtained at different trap energies $(\mathrm{E}_{C} -0.1$ eV to $\mathrm{E}_{C} -1.0$ eV). Simulation results reveal that the drop in the drain current under transient is mainly caused due to the channel temperature rise, whereas the magnitude of the transient current is affected by the buffer trap concentration.
AlGaN/GaN hemt的自热和体积捕集效应对漏极电流静态和瞬态特性的模拟
在静态和动态两种工作模式下,对AlGaN/GaN高电子迁移率晶体管(HEMTs)的自加热、缓冲和势垒层捕获效应进行了数值模拟研究。在仿真模型中,考虑了$\ mathm {E}_{C} -0.5$ eV的缓冲层陷阱,$\ mathm {E}_{C} -0.45$ eV的势垒层陷阱和自热效应。仿真结果与实测数据相吻合。预测了不同捕集剂浓度$(10^{16}~ 10^{18}$ cm$^{-3})$下$\ mathm {I}_{D}- $ mathm {V}_{D}$和$\ mathm {I}_{D}- $ mathm {V}_{G}$特性的变化。通过漏阻导通瞬态仿真研究了hemt的动态性能。分析了自热对漏极电流瞬态响应的影响。为了估计捕获现象的时间常数,通过排除自热效应来模拟瞬态特性。同样,我们也报道了阱密度$(10^{16}-10^{18}$ cm$^{-3})$对瞬态响应的影响,并得到了不同阱能量$(\mathrm{E}_{C} -0.1$ eV至$\mathrm{E}_{C} -1.0$ eV)时的瞬态特性。仿真结果表明,瞬态漏极电流的下降主要是由通道温度升高引起的,而瞬态电流的大小受缓冲阱浓度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信