HRTF magnitude synthesis via sparse representation of anthropometric features

P. Bilinski, J. Ahrens, Mark R. P. Thomas, I. Tashev, John C. Platt
{"title":"HRTF magnitude synthesis via sparse representation of anthropometric features","authors":"P. Bilinski, J. Ahrens, Mark R. P. Thomas, I. Tashev, John C. Platt","doi":"10.1109/ICASSP.2014.6854447","DOIUrl":null,"url":null,"abstract":"We propose a method for the synthesis of the magnitudes of Head-related Transfer Functions (HRTFs) using a sparse representation of anthropometric features. Our approach treats the HRTF synthesis problem as finding a sparse representation of the subject's anthropometric features w.r.t. the anthropometric features in the training set. The fundamental assumption is that the magnitudes of a given HRTF set can be described by the same sparse combination as the anthropometric data. Thus, we learn a sparse vector that represents the subject's anthropometric features as a linear superposition of the anthropometric features of a small subset of subjects from the training data. Then, we apply the same sparse vector directly on the HRTF tensor data. For evaluation purpose we use a new dataset, containing both anthropometric features and HRTFs. We compare the proposed sparse representation based approach with ridge regression and with the data of a manikin (which was designed based on average anthropometric data), and we simulate the best and the worst possible classifiers to select one of the HRTFs from the dataset. For instrumental evaluation we use log-spectral distortion. Experiments show that our sparse representation outperforms all other evaluated techniques, and that the synthesized HRTFs are almost as good as the best possible HRTF classifier.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"14 1","pages":"4468-4472"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

We propose a method for the synthesis of the magnitudes of Head-related Transfer Functions (HRTFs) using a sparse representation of anthropometric features. Our approach treats the HRTF synthesis problem as finding a sparse representation of the subject's anthropometric features w.r.t. the anthropometric features in the training set. The fundamental assumption is that the magnitudes of a given HRTF set can be described by the same sparse combination as the anthropometric data. Thus, we learn a sparse vector that represents the subject's anthropometric features as a linear superposition of the anthropometric features of a small subset of subjects from the training data. Then, we apply the same sparse vector directly on the HRTF tensor data. For evaluation purpose we use a new dataset, containing both anthropometric features and HRTFs. We compare the proposed sparse representation based approach with ridge regression and with the data of a manikin (which was designed based on average anthropometric data), and we simulate the best and the worst possible classifiers to select one of the HRTFs from the dataset. For instrumental evaluation we use log-spectral distortion. Experiments show that our sparse representation outperforms all other evaluated techniques, and that the synthesized HRTFs are almost as good as the best possible HRTF classifier.
通过人体测量特征的稀疏表示来合成HRTF大小
我们提出了一种利用人体特征的稀疏表示来合成头部相关传递函数(hrtf)的大小的方法。我们的方法将HRTF合成问题视为寻找受试者的人体特征的稀疏表示,而不是训练集中的人体特征。基本假设是,给定HRTF集的大小可以用与人体测量数据相同的稀疏组合来描述。因此,我们学习一个稀疏向量,将受试者的人体测量特征表示为训练数据中一小部分受试者的人体测量特征的线性叠加。然后,我们将相同的稀疏向量直接应用于HRTF张量数据。为了评估目的,我们使用了一个包含人体特征和hrtf的新数据集。我们将提出的基于稀疏表示的方法与脊回归和人体模型的数据(基于平均人体测量数据设计)进行比较,并模拟最佳和最差可能分类器,以从数据集中选择一个hrtf。对于仪器评估,我们使用对数光谱失真。实验表明,我们的稀疏表示优于所有其他评估的技术,并且合成的HRTF几乎与最好的HRTF分类器一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信