Possibilities of matrix lead alloy doping at non-gasostatic carbon-graphite impregnation

V. A. Gulevsky
{"title":"Possibilities of matrix lead alloy doping at non-gasostatic carbon-graphite impregnation","authors":"V. A. Gulevsky","doi":"10.17073/1997-308x-2021-2-41-48","DOIUrl":null,"url":null,"abstract":"The study covers the process of carbon-graphite – lead composite formation by impregnating a porous AG-1500 scaffold with a lead melt containing 2.0 at.% Cu. The paper describes the kinetics of filling the carbon-graphite open porosity with molten metal with the continuously heated furnace and impregnating device. A feature of this method is the volumetric expansion of the lead alloy impregnating porous carbon-graphite. It is placed in a sealed steel container filled with lead by 2/3 of its volume with further vacuuming, melt adding and sealing. Then the device is placed in the furnace so that the lead-copper alloy, already having a temperature below the liquidus temperature by 20–30 °C when heated in the furnace to 900 °C, impregnates the carbon-graphite scaffold with further expansion at constant heating. Porous scaffold capillaries are filled as the melt temperature continuously increases. Once graphite-carbon impregnated with lead alloy is taken out, it was investigated using X-ray spectral and energy-dispersive analysis. It was found that the elements of the impregnating alloy were redistributed at the carbon-graphite scaffold/Pb alloy interface depending on its initial composition. During the carbon-graphite scaffold impregnation with the Pb–2%Сu alloy under a pressure of up to 5 MPa, copper redistribution occurs on its inner pore surface and the boundary with the alloy, which leads to the formation of an interphase layer containing 70 % Cu. The conducted research made it possible to obtain a composite with a copper content of 1.85 at.% in the impregnating Pb alloy at the interface with carbon graphite.","PeriodicalId":14693,"journal":{"name":"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/1997-308x-2021-2-41-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study covers the process of carbon-graphite – lead composite formation by impregnating a porous AG-1500 scaffold with a lead melt containing 2.0 at.% Cu. The paper describes the kinetics of filling the carbon-graphite open porosity with molten metal with the continuously heated furnace and impregnating device. A feature of this method is the volumetric expansion of the lead alloy impregnating porous carbon-graphite. It is placed in a sealed steel container filled with lead by 2/3 of its volume with further vacuuming, melt adding and sealing. Then the device is placed in the furnace so that the lead-copper alloy, already having a temperature below the liquidus temperature by 20–30 °C when heated in the furnace to 900 °C, impregnates the carbon-graphite scaffold with further expansion at constant heating. Porous scaffold capillaries are filled as the melt temperature continuously increases. Once graphite-carbon impregnated with lead alloy is taken out, it was investigated using X-ray spectral and energy-dispersive analysis. It was found that the elements of the impregnating alloy were redistributed at the carbon-graphite scaffold/Pb alloy interface depending on its initial composition. During the carbon-graphite scaffold impregnation with the Pb–2%Сu alloy under a pressure of up to 5 MPa, copper redistribution occurs on its inner pore surface and the boundary with the alloy, which leads to the formation of an interphase layer containing 70 % Cu. The conducted research made it possible to obtain a composite with a copper content of 1.85 at.% in the impregnating Pb alloy at the interface with carbon graphite.
非气体静态碳-石墨浸渍中基体铅合金掺杂的可能性
该研究涵盖了用含2.0 at的铅熔体浸渍多孔AG-1500支架形成碳-石墨-铅复合材料的过程。%铜。本文叙述了用连续加热炉和浸渍装置将金属液填充碳-石墨开孔的动力学过程。该方法的一个特点是铅合金浸渍多孔碳-石墨的体积膨胀。将其放入密封的钢制容器中,容器中填充其体积的2/3的铅,并进一步抽真空、添加熔体和密封。然后将该装置放置在炉中,使铅铜合金在炉中加热到900℃时,温度已经低于液相温度20-30℃,在不断加热的情况下,使碳-石墨支架进一步膨胀。随着熔体温度的不断升高,多孔支架毛细血管被填充。将铅合金浸渍石墨碳取出后,利用x射线光谱和能量色散分析对其进行了研究。结果表明,浸渍合金的元素在碳-石墨支架/Pb合金界面上根据初始成分进行了重新分布。在高达5 MPa的压力下,Pb-2%Сu合金浸渍碳-石墨支架时,其孔内表面和与合金的交界面发生铜重分布,形成含铜70%的间相层。所进行的研究使获得铜含量为1.85 at的复合材料成为可能。在与碳石墨的界面处浸渍Pb合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信