Monkeypox Disease Detection with Pretrained Deep Learning Models

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Guanyu Ren
{"title":"Monkeypox Disease Detection with Pretrained Deep Learning Models","authors":"Guanyu Ren","doi":"10.5755/j01.itc.52.2.32803","DOIUrl":null,"url":null,"abstract":"Monkeypox has been recognized as the next global pandemic after COVID-19 and its potential damage cannot be neglected. Computer vision-based diagnosis and detection method with deep learning models have been proven effective during the COVID-19 period. However, with limited samples, the deep learning models are difficult to be full trained. In this paper, twelve CNN-based models, including VGG16, VGG19, ResNet152, DenseNet121, DenseNet201, EfficientNetB7, EfficientNetV2B3, EfficientNetV2M and InceptionV3, are used for monkeypox detection with limited skin pictures. Numerical results suggest that DenseNet201 achieves the best classification accuracy of 98.89% for binary classification, 100% for four-class classification and 99.94% for six-class classification over the rest models.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"11 1","pages":"288-296"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.2.32803","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Monkeypox has been recognized as the next global pandemic after COVID-19 and its potential damage cannot be neglected. Computer vision-based diagnosis and detection method with deep learning models have been proven effective during the COVID-19 period. However, with limited samples, the deep learning models are difficult to be full trained. In this paper, twelve CNN-based models, including VGG16, VGG19, ResNet152, DenseNet121, DenseNet201, EfficientNetB7, EfficientNetV2B3, EfficientNetV2M and InceptionV3, are used for monkeypox detection with limited skin pictures. Numerical results suggest that DenseNet201 achieves the best classification accuracy of 98.89% for binary classification, 100% for four-class classification and 99.94% for six-class classification over the rest models.
基于预训练深度学习模型的猴痘疾病检测
猴痘已被公认为继COVID-19之后的下一个全球大流行,其潜在危害不容忽视。基于深度学习模型的计算机视觉诊断检测方法在新冠肺炎疫情期间被证明是有效的。然而,由于样本有限,深度学习模型很难被完全训练。本文采用VGG16、VGG19、ResNet152、DenseNet121、DenseNet201、EfficientNetB7、EfficientNetV2B3、EfficientNetV2M和InceptionV3等12个基于cnn的模型,对有限皮肤图片进行猴痘检测。数值结果表明,与其他模型相比,DenseNet201在二元分类、四类分类和六类分类上分别达到了98.89%、100%和99.94%的最佳分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信