Channel selection for heterogeneous nodes in cognitive networks

Amiotosh Ghosh, W. Hamouda
{"title":"Channel selection for heterogeneous nodes in cognitive networks","authors":"Amiotosh Ghosh, W. Hamouda","doi":"10.1109/ICC.2013.6655548","DOIUrl":null,"url":null,"abstract":"We propose algorithms to address the channel allocation and fairness issues of multi band multiuser cognitive ad-hoc networks. Nodes in the network have unequal channel access probability and have no prior information about the offered bandwidth or number of users in the multiple access system. In that nodes use reinforcement learning algorithm to predict future channel selection probability from the past experience and reach an equilibrium state. Proof of convergence of this multi party stochastic game is provided. Furthermore, analytical throughput for such system is determined. Finally, numerical results are presented for performance evaluation of the proposed channel allocation algorithms.","PeriodicalId":6368,"journal":{"name":"2013 IEEE International Conference on Communications (ICC)","volume":"14 1","pages":"5939-5943"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2013.6655548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose algorithms to address the channel allocation and fairness issues of multi band multiuser cognitive ad-hoc networks. Nodes in the network have unequal channel access probability and have no prior information about the offered bandwidth or number of users in the multiple access system. In that nodes use reinforcement learning algorithm to predict future channel selection probability from the past experience and reach an equilibrium state. Proof of convergence of this multi party stochastic game is provided. Furthermore, analytical throughput for such system is determined. Finally, numerical results are presented for performance evaluation of the proposed channel allocation algorithms.
认知网络中异构节点的通道选择
我们提出了一种算法来解决多频段多用户认知自组织网络的信道分配和公平性问题。网络中的节点具有不相等的信道访问概率,并且没有关于多址系统中提供的带宽或用户数量的先验信息。其中节点利用强化学习算法从过去的经验中预测未来的信道选择概率,达到均衡状态。给出了该多方随机对策的收敛性证明。此外,还确定了该系统的分析通量。最后,对所提出的信道分配算法进行了性能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信