Improved cuckoo search approach based optimal proportional-derivative parameters for quadcopter flight control

Q3 Engineering
Nada El Gmili, Mostafa Mjahed, A. Elkari, H. Ayad
{"title":"Improved cuckoo search approach based optimal proportional-derivative parameters for quadcopter flight control","authors":"Nada El Gmili, Mostafa Mjahed, A. Elkari, H. Ayad","doi":"10.1080/1448837X.2021.2023248","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper proposes an improved cuckoo search (CS) algorithm for an optimal flight of an unmanned quadcopter using proportional-derivative (PD) controllers. In order to improve the optimisation capability of the standard CS, a new initialisation strategy of nests increases the exploitation search. The choice of an enhanced fitness function consisting of the weighted sum of the integral squared errors for longitude, latitude, altitude and attitude gives better performance. Then, the calculation of the velocity of displacements is inspired by the global nests’ intelligence search or the oriented CS capacity. Results and comparisons to the genetic algorithms, the particle swarm optimisation, the cooperative particle swarm optimisation-cuckoo search and the hybrid neural network PD techniques confirm that PD controllers tuned using the improved CS are efficient for quadrotor full control and trajectory tracking.","PeriodicalId":34935,"journal":{"name":"Australian Journal of Electrical and Electronics Engineering","volume":"47 1","pages":"219 - 232"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1448837X.2021.2023248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT This paper proposes an improved cuckoo search (CS) algorithm for an optimal flight of an unmanned quadcopter using proportional-derivative (PD) controllers. In order to improve the optimisation capability of the standard CS, a new initialisation strategy of nests increases the exploitation search. The choice of an enhanced fitness function consisting of the weighted sum of the integral squared errors for longitude, latitude, altitude and attitude gives better performance. Then, the calculation of the velocity of displacements is inspired by the global nests’ intelligence search or the oriented CS capacity. Results and comparisons to the genetic algorithms, the particle swarm optimisation, the cooperative particle swarm optimisation-cuckoo search and the hybrid neural network PD techniques confirm that PD controllers tuned using the improved CS are efficient for quadrotor full control and trajectory tracking.
基于改进布谷鸟搜索的四轴飞行器最优比例导数参数控制
提出了一种改进的布谷鸟搜索(CS)算法,利用比例导数(PD)控制器实现无人四轴飞行器的最优飞行。为了提高标准算法的优化能力,提出了一种新的巢初始化策略,增加了挖掘搜索量。选择由经度、纬度、高度和姿态的积分平方误差加权和组成的增强适应度函数可以获得更好的性能。然后,计算位移速度的灵感来自全局巢的智能搜索或定向CS能力。通过与遗传算法、粒子群优化、协同粒子群优化-布谷鸟搜索和混合神经网络PD技术的比较,验证了采用改进CS调谐的PD控制器对四旋翼飞行器的完全控制和轨迹跟踪是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Australian Journal of Electrical and Electronics Engineering
Australian Journal of Electrical and Electronics Engineering Engineering-Electrical and Electronic Engineering
CiteScore
2.30
自引率
0.00%
发文量
46
期刊介绍: Engineers Australia journal and conference papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信