Ballistic Missile Maneuver Penetration Based on Reinforcement Learning

Chaojie Yang, Jiang Wu, Guoqing Liu, Yuncan Zhang
{"title":"Ballistic Missile Maneuver Penetration Based on Reinforcement Learning","authors":"Chaojie Yang, Jiang Wu, Guoqing Liu, Yuncan Zhang","doi":"10.1109/GNCC42960.2018.9018872","DOIUrl":null,"url":null,"abstract":"Ballistic missiles, as the main weapon for long-range precision fire strikes, reflect the military development level and strategic capabilities of a country. This paper focuses on the midcourse penetration process of ballistic missile maneuvers. Assuming that the interceptor missile uses a proportional guidance strategy, the reinforcement learning methods is used to train network models. The method avoids the need for traditional control theory methods to establish precise mathematical models based on controlled objects, and this reduces the difficulty of the performance model to solve the optimal analytical solution. The use of State space discretization reduce the action space, and improves the network learning efficiency. Finally, the simulation proves that reinforcement learning can greatly increase the miss distance of missile maneuver penetration.","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"36 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GNCC42960.2018.9018872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Ballistic missiles, as the main weapon for long-range precision fire strikes, reflect the military development level and strategic capabilities of a country. This paper focuses on the midcourse penetration process of ballistic missile maneuvers. Assuming that the interceptor missile uses a proportional guidance strategy, the reinforcement learning methods is used to train network models. The method avoids the need for traditional control theory methods to establish precise mathematical models based on controlled objects, and this reduces the difficulty of the performance model to solve the optimal analytical solution. The use of State space discretization reduce the action space, and improves the network learning efficiency. Finally, the simulation proves that reinforcement learning can greatly increase the miss distance of missile maneuver penetration.
基于强化学习的弹道导弹机动突防
弹道导弹作为远程精确火力打击的主要武器,反映了一个国家的军事发展水平和战略能力。本文主要研究弹道导弹中段突防过程。假设拦截导弹采用比例制导策略,采用强化学习方法训练网络模型。该方法避免了传统控制理论方法需要基于被控对象建立精确的数学模型,降低了性能模型求解最优解析解的难度。利用状态空间离散化减小了网络的动作空间,提高了网络的学习效率。最后,通过仿真验证了强化学习可以大大提高导弹机动突防的脱靶量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信