{"title":"Path-Following and Attitude Control of a Payload Using Multiple Quadrotors","authors":"D. K. Villa, A. Brandão, M. S. Filho","doi":"10.1109/ICAR46387.2019.8981559","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of carrying a rod-shaped load between a certain origin and a desired goal using unmanned aerial vehicles (UAV). The load is carried via flexible cables by two quadrotors, one at each end of the bar. Positioning, orientation, and path-following tasks are here addressed. The robots and the load are modeled as a single system, using a virtual structure framework for robot formation and a nonlinear controller based on feedback linearization to handle the load oscillations and accomplish the missions. Results obtained running a real experiment using two AR. Drone quadrotors to carry an aluminum bar are presented through illustrations and videos, which validate the proposed system.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"36 1","pages":"535-540"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper addresses the problem of carrying a rod-shaped load between a certain origin and a desired goal using unmanned aerial vehicles (UAV). The load is carried via flexible cables by two quadrotors, one at each end of the bar. Positioning, orientation, and path-following tasks are here addressed. The robots and the load are modeled as a single system, using a virtual structure framework for robot formation and a nonlinear controller based on feedback linearization to handle the load oscillations and accomplish the missions. Results obtained running a real experiment using two AR. Drone quadrotors to carry an aluminum bar are presented through illustrations and videos, which validate the proposed system.