Dennis Felsch, Christian Mainka, Vladislav Mladenov, Jörg Schwenk
{"title":"SECRET: On the Feasibility of a Secure, Efficient, and Collaborative Real-Time Web Editor","authors":"Dennis Felsch, Christian Mainka, Vladislav Mladenov, Jörg Schwenk","doi":"10.1145/3052973.3052982","DOIUrl":null,"url":null,"abstract":"Real-time editing tools like Google Docs, Microsoft Office Online, or Etherpad have changed the way of collaboration. Many of these tools are based on Operational Transforms (OT), which guarantee that the views of different clients onto a document remain consistent over time. Usually, documents and operations are exposed to the server in plaintext -- and thus to administrators, governments, and potentially cyber criminals. Therefore, it is highly desirable to work collaboratively on encrypted documents. Previous implementations do not unleash the full potential of this idea: They either require large storage, network, and computation overhead, are not real-time collaborative, or do not take the structure of the document into account. The latter simplifies the approach since only OT algorithms for byte sequences are required, but the resulting ciphertexts are almost four times the size of the corresponding plaintexts. We present SECRET, the first secure, efficient, and collaborative real-time editor. In contrast to all previous works, SECRET is the first tool that (1.) allows the encryption of whole documents or arbitrary sub-parts thereof, (2.) uses a novel combination of tree-based OT with a structure preserving encryption, and (3.) requires only a modern browser without any extra software installation or browser extension. We evaluate our implementation and show that its encryption overhead is three times smaller in comparison to all previous approaches. SECRET can even be used by multiple users in a low-bandwidth scenario. The source code of SECRET is published on GitHub as an open-source project:https://github.com/RUB-NDS/SECRET/","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3052973.3052982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Real-time editing tools like Google Docs, Microsoft Office Online, or Etherpad have changed the way of collaboration. Many of these tools are based on Operational Transforms (OT), which guarantee that the views of different clients onto a document remain consistent over time. Usually, documents and operations are exposed to the server in plaintext -- and thus to administrators, governments, and potentially cyber criminals. Therefore, it is highly desirable to work collaboratively on encrypted documents. Previous implementations do not unleash the full potential of this idea: They either require large storage, network, and computation overhead, are not real-time collaborative, or do not take the structure of the document into account. The latter simplifies the approach since only OT algorithms for byte sequences are required, but the resulting ciphertexts are almost four times the size of the corresponding plaintexts. We present SECRET, the first secure, efficient, and collaborative real-time editor. In contrast to all previous works, SECRET is the first tool that (1.) allows the encryption of whole documents or arbitrary sub-parts thereof, (2.) uses a novel combination of tree-based OT with a structure preserving encryption, and (3.) requires only a modern browser without any extra software installation or browser extension. We evaluate our implementation and show that its encryption overhead is three times smaller in comparison to all previous approaches. SECRET can even be used by multiple users in a low-bandwidth scenario. The source code of SECRET is published on GitHub as an open-source project:https://github.com/RUB-NDS/SECRET/