{"title":"Application of FE method in predicting the properties of nanocomposites","authors":"M. Motamedi, M. Ramezani","doi":"10.1177/23977914221127528","DOIUrl":null,"url":null,"abstract":"Nanocomposites have low weight and the improvement in properties is significant due to their nanostructure. Finding the properties of nanocomposites by experimental or computational methods is the priorities of researchers. Numerous studies on stress-strain behavior, strength, elastic-plastic behavior, bending, buckling, torsion, and other material behavior have been performed using the finite element method, which was reviewed in this study. In all the researches, the results obtained from the finite element method were in proper agreement with the experimental and analytical results. The use of the finite element method allows further studies on nanocomposites, which may not be possible in an experimental method or may require a lot of time and cost. In the following, a model of copper/CNT nanocomposite was studied using finite element method. The model was composed of a CNT in a box of pure copper. The stress contour and displacement contour of model was obtained and the results showed a 135% growth in nanocomposite Young’s module.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"35 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221127528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocomposites have low weight and the improvement in properties is significant due to their nanostructure. Finding the properties of nanocomposites by experimental or computational methods is the priorities of researchers. Numerous studies on stress-strain behavior, strength, elastic-plastic behavior, bending, buckling, torsion, and other material behavior have been performed using the finite element method, which was reviewed in this study. In all the researches, the results obtained from the finite element method were in proper agreement with the experimental and analytical results. The use of the finite element method allows further studies on nanocomposites, which may not be possible in an experimental method or may require a lot of time and cost. In the following, a model of copper/CNT nanocomposite was studied using finite element method. The model was composed of a CNT in a box of pure copper. The stress contour and displacement contour of model was obtained and the results showed a 135% growth in nanocomposite Young’s module.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.