Temporal Action Detection Using a Statistical Language Model

Alexander Richard, Juergen Gall
{"title":"Temporal Action Detection Using a Statistical Language Model","authors":"Alexander Richard, Juergen Gall","doi":"10.1109/CVPR.2016.341","DOIUrl":null,"url":null,"abstract":"While current approaches to action recognition on presegmented video clips already achieve high accuracies, temporal action detection is still far from comparably good results. Automatically locating and classifying the relevant action segments in videos of varying lengths proves to be a challenging task. We propose a novel method for temporal action detection including statistical length and language modeling to represent temporal and contextual structure. Our approach aims at globally optimizing the joint probability of three components, a length and language model and a discriminative action model, without making intermediate decisions. The problem of finding the most likely action sequence and the corresponding segment boundaries in an exponentially large search space is addressed by dynamic programming. We provide an extensive evaluation of each model component on Thumos 14, a large action detection dataset, and report state-of-the-art results on three datasets.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"3131-3140"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"205","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 205

Abstract

While current approaches to action recognition on presegmented video clips already achieve high accuracies, temporal action detection is still far from comparably good results. Automatically locating and classifying the relevant action segments in videos of varying lengths proves to be a challenging task. We propose a novel method for temporal action detection including statistical length and language modeling to represent temporal and contextual structure. Our approach aims at globally optimizing the joint probability of three components, a length and language model and a discriminative action model, without making intermediate decisions. The problem of finding the most likely action sequence and the corresponding segment boundaries in an exponentially large search space is addressed by dynamic programming. We provide an extensive evaluation of each model component on Thumos 14, a large action detection dataset, and report state-of-the-art results on three datasets.
使用统计语言模型的时间动作检测
虽然目前对预分割视频片段的动作识别方法已经达到了很高的精度,但时间动作检测仍然远没有达到相当好的效果。在不同长度的视频中自动定位和分类相关的动作片段是一项具有挑战性的任务。我们提出了一种新的时间动作检测方法,包括统计长度和语言建模来表示时间和上下文结构。我们的方法旨在全局优化三个组成部分的联合概率,一个长度和语言模型和一个判别行为模型,而不做中间决策。用动态规划方法解决了在指数级搜索空间中寻找最可能的动作序列和相应的段边界的问题。我们在Thumos 14(一个大型动作检测数据集)上对每个模型组件进行了广泛的评估,并在三个数据集上报告了最新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信