Optical Encoding Model Based on OAM Beam Superposition and Machine Learning Detection

Erick Lamilla, Manuel S. Alvarez‐Alvarado, Arturo Pazmino, Peter Iza
{"title":"Optical Encoding Model Based on OAM Beam Superposition and Machine Learning Detection","authors":"Erick Lamilla, Manuel S. Alvarez‐Alvarado, Arturo Pazmino, Peter Iza","doi":"10.1109/OMN/SBFotonIOPC58971.2023.10230964","DOIUrl":null,"url":null,"abstract":"An optical encoding model based on the coher-ent superposition of two Laguerre-Gaussian modes carrying orbital angular momentum is presented using Machine Learning detection method. In the encoding process, the intensity profile for the encoded data is generated based on selection of $p$ and $\\ell$ indices, while the decoding process is performed using support vector machine algorithm. Different encoding systems are designed and tested via simulations to verify the robustness of the proposed optical encoding model, finding a BER = 10–9 for 10.2 dB of signal-to-noise ratio in the best of the case.","PeriodicalId":31141,"journal":{"name":"Netcom","volume":"35 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netcom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN/SBFotonIOPC58971.2023.10230964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An optical encoding model based on the coher-ent superposition of two Laguerre-Gaussian modes carrying orbital angular momentum is presented using Machine Learning detection method. In the encoding process, the intensity profile for the encoded data is generated based on selection of $p$ and $\ell$ indices, while the decoding process is performed using support vector machine algorithm. Different encoding systems are designed and tested via simulations to verify the robustness of the proposed optical encoding model, finding a BER = 10–9 for 10.2 dB of signal-to-noise ratio in the best of the case.
基于OAM光束叠加和机器学习检测的光学编码模型
利用机器学习检测方法,提出了一种基于携带轨道角动量的两种拉盖尔-高斯模式相干叠加的光学编码模型。在编码过程中,通过选择p和ell指数生成编码数据的强度曲线,解码过程采用支持向量机算法进行。设计了不同的编码系统,并通过仿真测试了所提出的光学编码模型的鲁棒性,在信噪比为10.2 dB的情况下,最佳的误码率为10-9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信